United States
Analysis of Information in Speech Based on MANOVA
Kajarekar, Sachin S., Hermansky, Hynek
We propose analysis of information in speech using three sources - language (phone), speaker and channeL Information in speech is measured as mutual information between the source and the set of features extracted from speech signaL We assume that distribution offeatures can be modeled using Gaussian distribution. The mutual information is computed using the results of analysis of variability in speech. We observe similarity in the results of phone variability and phone information, and show that the results of the proposed analysis have more meaningful interpretations than the analysis of variability. 1 Introduction Speech signal carries information about the linguistic message, the speaker, the communication channeL In the previous work [1, 2], we proposed analysis of information inspeech as analysis of variability in a set of features extracted from the speech signal. The variability was measured as covariance of the features, and analysis was performed using using multivariate analysis of variance (MANOVA). Total variability was divided into three types of variabilities, namely, intra-phone (or phone) variability, speaker variability, and channel variability.
Maximally Informative Dimensions: Analyzing Neural Responses to Natural Signals
Sharpee, Tatyana, Rust, Nicole C., Bialek, William
From olfaction to vision and audition, there is an increasing need, and a growing number of experiments [1]-[8] that study responses of sensory neurons to natural stimuli. Natural stimuli have specific statistical properties [9, 10], and therefore sample only a subspace of all possible spatial and temporal frequencies explored during stimulation with white noise. Observing the full dynamic range of neural responses may require using stimulus ensembles whichapproximate those occurring in nature, and it is an attractive hypothesis that the neural representation of these natural signals may be optimized in some way. Finally, some neuron responses are strongly nonlinear and adaptive, and may not be predicted from a combination of responses to simple stimuli. It has also been shown that the variability in neural response decreases substantially when dynamical, rather than static, stimuli are used [11, 12]. For all these reasons, it would be attractive to have a rigorous method of analyzing neural responses to complex, naturalistic inputs.
Shape Recipes: Scene Representations that Refer to the Image
Freeman, William T., Torralba, Antonio
The goal of low-level vision is to estimate an underlying scene, given an observed image. Real-world scenes (eg, albedos or shapes) can be very complex, conventionally requiring high dimensional representations which are hard to estimate and store. We propose a low-dimensional representation, calleda scene recipe, that relies on the image itself to describe the complex scene configurations. Shape recipes are an example: these are the regression coefficients that predict the bandpassed shape from image data. We describe the benefits of this representation, and show two uses illustrating their properties: (1) we improve stereo shape estimates by learning shape recipes at low resolution and applying them at full resolution; (2) Shape recipes implicitly contain information about lighting and materials and we use them for material segmentation.
Learning Graphical Models with Mercer Kernels
Bach, Francis R., Jordan, Michael I.
We present a class of algorithms for learning the structure of graphical models from data. The algorithms are based on a measure known as the kernel generalized variance (KGV), which essentially allows us to treat all variables on an equal footing as Gaussians in a feature space obtained from Mercer kernels. Thus we are able to learn hybrid graphs involving discrete and continuous variables of arbitrary type. We explore the computational properties of our approach, showing how to use the kernel trick to compute the relevant statistics in linear time. We illustrate our framework with experiments involving discrete and continuous data.
Replay, Repair and Consolidation
A standard view of memory consolidation is that episodes are stored temporarily inthe hippocampus, and are transferred to the neocortex through replay. Various recent experimental challenges to the idea of transfer, particularly for human memory, are forcing its reevaluation. However, although there is independent neurophysiological evidence for replay, short of transfer, there are few theoretical ideas for what it might be doing. We suggest and demonstrate two important computational roles associated with neocortical indices.
Scaling of Probability-Based Optimization Algorithms
Population-based Incremental Learning is shown require very sensitive scalingof its learning rate. The learning rate must scale with the system size in a problem-dependent way. This is shown in two problems: the needle-in-a haystack, in which the learning rate must vanish exponentially in the system size, and in a smooth function in which the learning rate must vanish like the square root of the system size. Two methods are proposed for removing this sensitivity. Alearning dynamics which obeys detailed balance is shown to give consistent performance over the entire range of learning rates. An analog of mutation is shown to require a learning rate which scales as the inverse system size, but is problem independent.
Dyadic Classification Trees via Structural Risk Minimization
Classification trees are one of the most popular types of classifiers, with ease of implementation and interpretation being among their attractive features. Despite the widespread use of classification trees, theoretical analysis of their performance is scarce. In this paper, we show that a new family of classification trees, called dyadic classification trees (DCTs), are near optimal (in a minimax sense) for a very broad range of classification problems.This demonstrates that other schemes (e.g., neural networks, support vector machines) cannot perform significantly better than DCTs in many cases. We also show that this near optimal performance isattained with linear (in the number of training data) complexity growing and pruning algorithms. Moreover, the performance of DCTs on benchmark datasets compares favorably to that of standard CART, which is generally more computationally intensive and which does not possess similar near optimality properties. Our analysis stems from theoretical resultson structural risk minimization, on which the pruning rule for DCTs is based.
Theory-Based Causal Inference
Tenenbaum, Joshua B., Griffiths, Thomas L.
People routinely make sophisticated causal inferences unconsciously, effortlessly, andfrom very little data - often from just one or a few observations. Weargue that these inferences can be explained as Bayesian computations over a hypothesis space of causal graphical models, shaped by strong top-down prior knowledge in the form of intuitive theories.