Goto

Collaborating Authors

 Anchorage


The study of short texts in digital politics: Document aggregation for topic modeling

arXiv.org Artificial Intelligence

Statistical topic modeling is widely used in political science to study text. Researchers examine documents of varying lengths, from tweets to speeches. There is ongoing debate on how document length affects the interpretability of topic models. We investigate the effects of aggregating short documents into larger ones based on natural units that partition the corpus. In our study, we analyze one million tweets by U.S. state legislators from April 2016 to September 2020. We find that for documents aggregated at the account level, topics are more associated with individual states than when using individual tweets. This finding is replicated with Wikipedia pages aggregated by birth cities, showing how document definitions can impact topic modeling results.


Robot disguised as a coyote or fox will scare wildlife away from runways at Alaska airport

FOX News

Fox News Flash top headlines are here. Check out what's clicking on Foxnews.com. ANCHORAGE, Alaska (AP) -- A headless robot about the size of a labrador retriever will be camouflaged as a coyote or fox to ward off migratory birds and other wildlife at Alaska's second largest airport, a state agency said. The Alaska Department of Transportation and Public Facilities has named the new robot Aurora and said it will be based at the Fairbanks airport to "enhance and augment safety and operations," the Anchorage Daily News reported. The transportation department released a video of the robot climbing rocks, going up stairs and doing something akin to dancing while flashing green lights.


2D Convolutional Neural Network for Event Reconstruction in IceCube DeepCore

arXiv.org Machine Learning

IceCube DeepCore is an extension of the IceCube Neutrino Observatory designed to measure GeV scale atmospheric neutrino interactions for the purpose of neutrino oscillation studies. Distinguishing muon neutrinos from other flavors and reconstructing inelasticity are especially difficult tasks at GeV scale energies in IceCube DeepCore due to sparse instrumentation. Convolutional neural networks (CNNs) have been found to have better success at neutrino event reconstruction than conventional likelihood-based methods. In this contribution, we present a new CNN model that exploits time and depth translational symmetry in IceCube DeepCore data and present the model's performance, specifically for flavor identification and inelasticity reconstruction.


Recent neutrino oscillation result with the IceCube experiment

arXiv.org Artificial Intelligence

The IceCube South Pole Neutrino Observatory is a Cherenkov detector instrumented in a cubic kilometer of ice at the South Pole. IceCube's primary scientific goal is the detection of TeV neutrino emissions from astrophysical sources. At the lower center of the IceCube array, there is a subdetector called DeepCore, which has a denser configuration that makes it possible to lower the energy threshold of IceCube and observe GeV-scale neutrinos, opening the window to atmospheric neutrino oscillations studies. Advances in physics sensitivity have recently been achieved by employing Convolutional Neural Networks to reconstruct neutrino interactions in the DeepCore detector. In this contribution, the recent IceCube result from the atmospheric muon neutrino disappearance analysis using the CNN-reconstructed neutrino sample is presented and compared to the existing worldwide measurements.


Observation of high-energy neutrinos from the Galactic plane

arXiv.org Artificial Intelligence

The origin of high-energy cosmic rays, atomic nuclei that continuously impact Earth's atmosphere, has been a mystery for over a century. Due to deflection in interstellar magnetic fields, cosmic rays from the Milky Way arrive at Earth from random directions. However, near their sources and during propagation, cosmic rays interact with matter and produce high-energy neutrinos. We search for neutrino emission using machine learning techniques applied to ten years of data from the IceCube Neutrino Observatory. We identify neutrino emission from the Galactic plane at the 4.5$\sigma$ level of significance, by comparing diffuse emission models to a background-only hypothesis. The signal is consistent with modeled diffuse emission from the Galactic plane, but could also arise from a population of unresolved point sources.


Network On Network for Tabular Data Classification in Real-world Applications

arXiv.org Machine Learning

Tabular data is the most common data format adopted by our customers ranging from retail, finance to E-commerce, and tabular data classification plays an essential role to their businesses. In this paper, we present Network On Network (NON), a practical tabular data classification model based on deep neural network to provide accurate predictions. Various deep methods have been proposed and promising progress has been made. However, most of them use operations like neural network and factorization machines to fuse the embeddings of different features directly, and linearly combine the outputs of those operations to get the final prediction. As a result, the intra-field information and the non-linear interactions between those operations (e.g. neural network and factorization machines) are ignored. Intra-field information is the information that features inside each field belong to the same field. NON is proposed to take full advantage of intra-field information and non-linear interactions. It consists of three components: field-wise network at the bottom to capture the intra-field information, across field network in the middle to choose suitable operations data-drivenly, and operation fusion network on the top to fuse outputs of the chosen operations deeply. Extensive experiments on six real-world datasets demonstrate NON can outperform the state-of-the-art models significantly. Furthermore, both qualitative and quantitative study of the features in the embedding space show NON can capture intra-field information effectively.


Artificial intelligence could help air travelers save a bundle

#artificialintelligence

Researchers are using artificial intelligence to help airlines price ancillary services such as checked bags and seat reservations in a way that is beneficial to customers' budget and privacy, as well as to the airline industry's bottom line. When airlines began unbundling the costs of flights and ancillary services in 2008, many customers saw it as a tactic to quote a low base fare and then add extras to boost profits, the researchers said. In a new study, the researchers use unbundling to meet customer needs while also maximizing airline revenue with intelligent, individualized pricing models offered in real time as a customer shops. The results of the study will be presented at the 2019 Conference on Knowledge Discovery and Data Mining on Aug. 6 in Anchorage, Alaska. Airlines operate on very slim margins, the researchers said.


Deep Mixture Point Processes: Spatio-temporal Event Prediction with Rich Contextual Information

arXiv.org Machine Learning

Predicting when and where events will occur in cities, like taxi pick-ups, crimes, and vehicle collisions, is a challenging and important problem with many applications in fields such as urban planning, transportation optimization and location-based marketing. Though many point processes have been proposed to model events in a continuous spatio-temporal space, none of them allow for the consideration of the rich contextual factors that affect event occurrence, such as weather, social activities, geographical characteristics, and traffic. In this paper, we propose \textsf{DMPP} (Deep Mixture Point Processes), a point process model for predicting spatio-temporal events with the use of rich contextual information; a key advance is its incorporation of the heterogeneous and high-dimensional context available in image and text data. Specifically, we design the intensity of our point process model as a mixture of kernels, where the mixture weights are modeled by a deep neural network. This formulation allows us to automatically learn the complex nonlinear effects of the contextual factors on event occurrence. At the same time, this formulation makes analytical integration over the intensity, which is required for point process estimation, tractable. We use real-world data sets from different domains to demonstrate that DMPP has better predictive performance than existing methods.


Gaussian Process Regression for Arctic Coastal Erosion Forecasting

arXiv.org Machine Learning

Arctic coastal morphology is governed by multiple factors, many of which are affected by climatological changes. As the season length for shorefast ice decreases and temperatures warm permafrost soils, coastlines are more susceptible to erosion from storm waves. Such coastal erosion is a concern, since the majority of the population centers and infrastructure in the Arctic are located near the coasts. Stakeholders and decision makers increasingly need models capable of scenario-based predictions to assess and mitigate the effects of coastal morphology on infrastructure and land use. Our research uses Gaussian process models to forecast Arctic coastal erosion along the Beaufort Sea near Drew Point, AK. Gaussian process regression is a data-driven modeling methodology capable of extracting patterns and trends from data-sparse environments such as remote Arctic coastlines. To train our model, we use annual coastline positions and near-shore summer temperature averages from existing datasets and extend these data by extracting additional coastlines from satellite imagery. We combine our calibrated models with future climate models to generate a range of plausible future erosion scenarios. Our results show that the Gaussian process methodology substantially improves yearly predictions compared to linear and nonlinear least squares methods, and is capable of generating detailed forecasts suitable for use by decision makers.


Training Effective Node Classifiers for Cascade Classification

arXiv.org Machine Learning

Cascade classifiers are widely used in real-time object detection. Different from conventional classifiers that are designed for a low overall classification error rate, a classifier in each node of the cascade is required to achieve an extremely high detection rate and moderate false positive rate. Although there are a few reported methods addressing this requirement in the context of object detection, there is no principled feature selection method that explicitly takes into account this asymmetric node learning objective. We provide such an algorithm here. We show that a special case of the biased minimax probability machine has the same formulation as the linear asymmetric classifier (LAC) of Wu et al (2005). We then design a new boosting algorithm that directly optimizes the cost function of LAC. The resulting totally-corrective boosting algorithm is implemented by the column generation technique in convex optimization. Experimental results on object detection verify the effectiveness of the proposed boosting algorithm as a node classifier in cascade object detection, and show performance better than that of the current state-of-the-art.