Calgary
Biometrics in the Time of Pandemic: 40% Masked Face Recognition Degradation can be Reduced to 2%
Queiroz, Leonardo, Lai, Kenneth, Yanushkevich, Svetlana, Shmerko, Vlad
In this study of the face recognition on masked versus unmasked faces generated using Flickr-Faces-HQ and SpeakingFaces datasets, we report 36.78% degradation of recognition performance caused by the mask-wearing at the time of pandemics, in particular, in border checkpoint scenarios. We have achieved better performance and reduced the degradation to 1.79% using advanced deep learning approaches in the cross-spectral domain.
Domain-Agnostic Clustering with Self-Distillation
Adnan, Mohammed, Ioannou, Yani A., Tsai, Chuan-Yung, Taylor, Graham W.
Recent advancements in self-supervised learning have reduced the gap between supervised and unsupervised representation learning. However, most self-supervised and deep clustering techniques rely heavily on data augmentation, rendering them ineffective for many learning tasks where insufficient domain knowledge exists for performing augmentation. We propose a new self-distillation based algorithm for domain-agnostic clustering. Our method builds upon the existing deep clustering frameworks and requires no separate student model. The proposed method outperforms existing domain agnostic (augmentation-free) algorithms on CIFAR-10. We empirically demonstrate that knowledge distillation can improve unsupervised representation learning by extracting richer `dark knowledge' from the model than using predicted labels alone. Preliminary experiments also suggest that self-distillation improves the convergence of DeepCluster-v2.
Edge-Enhanced Dual Discriminator Generative Adversarial Network for Fast MRI with Parallel Imaging Using Multi-view Information
Huang, Jiahao, Ding, Weiping, Lv, Jun, Yang, Jingwen, Dong, Hao, Del Ser, Javier, Xia, Jun, Ren, Tiaojuan, Wong, Stephen, Yang, Guang
In clinical medicine, magnetic resonance imaging (MRI) is one of the most important tools for diagnosis, triage, prognosis, and treatment planning. However, MRI suffers from an inherent slow data acquisition process because data is collected sequentially in k-space. In recent years, most MRI reconstruction methods proposed in the literature focus on holistic image reconstruction rather than enhancing the edge information. This work steps aside this general trend by elaborating on the enhancement of edge information. Specifically, we introduce a novel parallel imaging coupled dual discriminator generative adversarial network (PIDD-GAN) for fast multi-channel MRI reconstruction by incorporating multi-view information. The dual discriminator design aims to improve the edge information in MRI reconstruction. One discriminator is used for holistic image reconstruction, whereas the other one is responsible for enhancing edge information. An improved U-Net with local and global residual learning is proposed for the generator. Frequency channel attention blocks (FCA Blocks) are embedded in the generator for incorporating attention mechanisms. Content loss is introduced to train the generator for better reconstruction quality. We performed comprehensive experiments on Calgary-Campinas public brain MR dataset and compared our method with state-of-the-art MRI reconstruction methods. Ablation studies of residual learning were conducted on the MICCAI13 dataset to validate the proposed modules. Results show that our PIDD-GAN provides high-quality reconstructed MR images, with well-preserved edge information. The time of single-image reconstruction is below 5ms, which meets the demand of faster processing.
Deep Learning Approach for Aggressive Driving Behaviour Detection
Talebloo, Farid, Mohammed, Emad A., Far, Behrouz
Driving behaviour is one of the primary causes of road crashes and accidents, and these can be decreased by identifying and minimizing aggressive driving behaviour. This study identifies the timesteps when a driver in different circumstances (rush, mental conflicts, reprisal) begins to drive aggressively. An observer (real or virtual) is needed to examine driving behaviour to discover aggressive driving occasions; we overcome this problem by using a smartphone's GPS sensor to detect locations and classify drivers' driving behaviour every three minutes. To detect timeseries patterns in our dataset, we employ RNN (GRU, LSTM) algorithms to identify patterns during the driving course. The algorithm is independent of road, vehicle, position, or driver characteristics. We conclude that three minutes (or more) of driving (120 seconds of GPS data) is sufficient to identify driver behaviour. The results show high accuracy and a high F1 score.
Dynamic and Systematic Survey of Deep Learning Approaches for Driving Behavior Analysis
Talebloo, Farid, Mohammed, Emad A., Far, Behrouz H.
Improper driving results in fatalities, damages, increased energy consumptions, and depreciation of the vehicles. Analyzing driving behaviour could lead to optimize and avoid mentioned issues. By identifying the type of driving and mapping them to the consequences of that type of driving, we can get a model to prevent them. In this regard, we try to create a dynamic survey paper to review and present driving behaviour survey data for future researchers in our research. By analyzing 58 articles, we attempt to classify standard methods and provide a framework for future articles to be examined and studied in different dashboards and updated about trends.
Quorum receives research funding for Machine Learning project
CALGARY, Alberta, July 06, 2021 (GLOBE NEWSWIRE) -- Quorum Information Technologies Inc. (TSX Venture: QIS) (Quorum) announced today that it is receiving advisory services and funding of up to $724,746 from the National Research Council of Canada Industrial Research Assistance Program (NRC IRAP) to support a research and development project to consolidate Quorum's dealership data and add machine learning capabilities to its Cloud-based applications. The NRC IRAP support is the next step in a process started in 2020 when Quorum launched QAnalytics โ an enterprise reporting tool for the Quorum suite of products powered by Microsoft Power BI. QAnalytics is now utilized by 30% of Quorum's XSellerator Dealership Management System (DMS) customers. "QAnalytics has changed how we manage our 11 franchised dealerships in our auto group," stated Tim Davis, CEO of Davis Auto Group. "The real time metrics that QAnalytics provides for all aspects of our dealership's operations allow our management team to make confident, data-driven decisions." Quorum's next step is to strategically consolidate dealership data from its 1,025 customers on Microsoft Azure Synapse, enabling QAnalytics to deliver enhanced critical Business Intelligence insights into dealership operations and provide a consolidated dataset for Machine Learning projects.
An Evolutionary Algorithm for Task Scheduling in Crowdsourced Software Development
Saremi, Razieh, Yagnik, Hardik, Togelius, Julian, Yang, Ye, Ruhe, Guenther
The complexity of software tasks and the uncertainty of crowd developer behaviors make it challenging to plan crowdsourced software development (CSD) projects. In a competitive crowdsourcing marketplace, competition for shared worker resources from multiple simultaneously open tasks adds another layer of uncertainty to the potential outcomes of software crowdsourcing. These factors lead to the need for supporting CSD managers with automated scheduling to improve the visibility and predictability of crowdsourcing processes and outcomes. To that end, this paper proposes an evolutionary algorithm-based task scheduling method for crowdsourced software development. The proposed evolutionary scheduling method uses a multiobjective genetic algorithm to recommend an optimal task start date. The method uses three fitness functions, based on project duration, task similarity, and task failure prediction, respectively. The task failure fitness function uses a neural network to predict the probability of task failure with respect to a specific task start date. The proposed method then recommends the best tasks start dates for the project as a whole and each individual task so as to achieve the lowest project failure ratio. Experimental results on 4 projects demonstrate that the proposed method has the potential to reduce project duration by a factor of 33-78%.
Detection of Alzheimer's Disease Using Graph-Regularized Convolutional Neural Network Based on Structural Similarity Learning of Brain Magnetic Resonance Images
Yang, Kuo, Mohammed, Emad A., Far, Behrouz H.
Objective: This paper presents an Alzheimer's disease (AD) detection method based on learning structural similarity between Magnetic Resonance Images (MRIs) and representing this similarity as a graph. Methods: We construct the similarity graph using embedded features of the input image (i.e., Non-Demented (ND), Very Mild Demented (VMD), Mild Demented (MD), and Moderated Demented (MDTD)). We experiment and compare different dimension-reduction and clustering algorithms to construct the best similarity graph to capture the similarity between the same class images using the cosine distance as a similarity measure. We utilize the similarity graph to present (sample) the training data to a convolutional neural network (CNN). We use the similarity graph as a regularizer in the loss function of a CNN model to minimize the distance between the input images and their k-nearest neighbours in the similarity graph while minimizing the categorical cross-entropy loss between the training image predictions and the actual image class labels. Results: We conduct extensive experiments with several pre-trained CNN models and compare the results to other recent methods. Conclusion: Our method achieves superior performance on the testing dataset (accuracy = 0.986, area under receiver operating characteristics curve = 0.998, F1 measure = 0.987). Significance: The classification results show an improvement in the prediction accuracy compared to the other methods. We release all the code used in our experiments to encourage reproducible research in this area
On the Philosophical, Cognitive and Mathematical Foundations of Symbiotic Autonomous Systems (SAS)
Wang, Yingxu, Karray, Fakhri, Kwong, Sam, Plataniotis, Konstantinos N., Leung, Henry, Hou, Ming, Tunstel, Edward, Rudas, Imre J., Trajkovic, Ljiljana, Kaynak, Okyay, Kacprzyk, Janusz, Zhou, Mengchu, Smith, Michael H., Chen, Philip, Patel, Shushma
Symbiotic Autonomous Systems (SAS) are advanced intelligent and cognitive systems exhibiting autonomous collective intelligence enabled by coherent symbiosis of human-machine interactions in hybrid societies. Basic research in the emerging field of SAS has triggered advanced general AI technologies functioning without human intervention or hybrid symbiotic systems synergizing humans and intelligent machines into coherent cognitive systems. This work presents a theoretical framework of SAS underpinned by the latest advances in intelligence, cognition, computer, and system sciences. SAS are characterized by the composition of autonomous and symbiotic systems that adopt bio-brain-social-inspired and heterogeneously synergized structures and autonomous behaviors. This paper explores their cognitive and mathematical foundations. The challenge to seamless human-machine interactions in a hybrid environment is addressed. SAS-based collective intelligence is explored in order to augment human capability by autonomous machine intelligence towards the next generation of general AI, autonomous computers, and trustworthy mission-critical intelligent systems. Emerging paradigms and engineering applications of SAS are elaborated via an autonomous knowledge learning system that symbiotically works between humans and cognitive robots.