Edmonton
LLMParser: An Exploratory Study on Using Large Language Models for Log Parsing
Ma, Zeyang, Chen, An Ran, Kim, Dong Jae, Chen, Tse-Hsun, Wang, Shaowei
Logs are important in modern software development with runtime information. Log parsing is the first step in many log-based analyses, that involve extracting structured information from unstructured log data. Traditional log parsers face challenges in accurately parsing logs due to the diversity of log formats, which directly impacts the performance of downstream log-analysis tasks. In this paper, we explore the potential of using Large Language Models (LLMs) for log parsing and propose LLMParser, an LLM-based log parser based on generative LLMs and few-shot tuning. We leverage four LLMs, Flan-T5-small, Flan-T5-base, LLaMA-7B, and ChatGLM-6B in LLMParsers. Our evaluation of 16 open-source systems shows that LLMParser achieves statistically significantly higher parsing accuracy than state-of-the-art parsers (a 96% average parsing accuracy). We further conduct a comprehensive empirical analysis on the effect of training size, model size, and pre-training LLM on log parsing accuracy. We find that smaller LLMs may be more effective than more complex LLMs; for instance where Flan-T5-base achieves comparable results as LLaMA-7B with a shorter inference time. We also find that using LLMs pre-trained using logs from other systems does not always improve parsing accuracy. While using pre-trained Flan-T5-base shows an improvement in accuracy, pre-trained LLaMA results in a decrease (decrease by almost 55% in group accuracy). In short, our study provides empirical evidence for using LLMs for log parsing and highlights the limitations and future research direction of LLM-based log parsers.
FastLogAD: Log Anomaly Detection with Mask-Guided Pseudo Anomaly Generation and Discrimination
Lin, Yifei, Deng, Hanqiu, Li, Xingyu
Nowadays large computers extensively output logs to record the runtime status and it has become crucial to identify any suspicious or malicious activities from the information provided by the realtime logs. Thus, fast log anomaly detection is a necessary task to be implemented for automating the infeasible manual detection. Most of the existing unsupervised methods are trained only on normal log data, but they usually require either additional abnormal data for hyperparameter selection or auxiliary datasets for discriminative model optimization. In this paper, aiming for a highly effective discriminative model that enables rapid anomaly detection,we propose FastLogAD, a generator-discriminator framework trained to exhibit the capability of generating pseudo-abnormal logs through the Mask-Guided Anomaly Generation (MGAG) model and efficiently identifying the anomalous logs via the Discriminative Abnormality Separation (DAS) model. Particularly, pseudo-abnormal logs are generated by replacing randomly masked tokens in a normal sequence with unlikely candidates. During the discriminative stage, FastLogAD learns a distinct separation between normal and pseudoabnormal samples based on their embedding norms, allowing the selection of a threshold without exposure to any test data and achieving competitive performance. Extensive experiments on several common benchmarks show that our proposed FastLogAD outperforms existing anomaly detection approaches. Furthermore, compared to previous methods, FastLogAD achieves at least x10 speed increase in anomaly detection over prior work. Our implementation is available at https://github.com/YifeiLin0226/FastLogAD.
FraGNNet: A Deep Probabilistic Model for Mass Spectrum Prediction
Young, Adamo, Wang, Fei, Wishart, David, Wang, Bo, Röst, Hannes, Greiner, Russ
The process of identifying a compound from its mass spectrum is a critical step in the analysis of complex mixtures. Typical solutions for the mass spectrum to compound (MS2C) problem involve matching the unknown spectrum against a library of known spectrum-molecule pairs, an approach that is limited by incomplete library coverage. Compound to mass spectrum (C2MS) models can improve retrieval rates by augmenting real libraries with predicted spectra. Unfortunately, many existing C2MS models suffer from problems with prediction resolution, scalability, or interpretability. We develop a new probabilistic method for C2MS prediction, FraGNNet, that can efficiently and accurately predict high-resolution spectra. FraGNNet uses a structured latent space to provide insight into the underlying processes that define the spectrum. Our model achieves state-of-the-art performance in terms of prediction error, and surpasses existing C2MS models as a tool for retrieval-based MS2C.
Research Re: search & Re-search
Search algorithms are often categorized by their node expansion strategy. One option is the depth-first strategy, a simple backtracking strategy that traverses the search space in the order in which successor nodes are generated. An alternative is the best-first strategy, which was designed to make it possible to use domain-specific heuristic information. By exploring promising parts of the search space first, best-first algorithms are usually more efficient than depth-first algorithms. In programs that play minimax games such as chess and checkers, the efficiency of the search is of crucial importance. Given the success of best-first algorithms in other domains, one would expect them to be used for minimax games too. However, all high-performance game-playing programs are based on a depth-first algorithm. This study takes a closer look at a depth-first algorithm, AB, and a best-first algorithm, SSS. The prevailing opinion on these algorithms is that SSS offers the potential for a more efficient search, but that its complicated formulation and exponential memory requirements render it impractical. The theoretical part of this work shows that there is a surprisingly straightforward link between the two algorithms -- for all practical purposes, SSS is a special case of AB. Subsequent empirical evidence proves the prevailing opinion on SSS to be wrong: it is not a complicated algorithm, it does not need too much memory, and it is also not more efficient than depth-first search.
Deep Representations and Codes for Image Auto-Annotation
The task of image auto-annotation, namely assigning a set of relevant tags to an image, is challenging due to the size and variability of tag vocabularies. Consequently, most existing algorithms focus on tag assignment and fix an often large number of hand-crafted features to describe image characteristics. In this paper we introduce a hierarchical model for learning representations of standard sized color images from the pixel level, removing the need for engineered feature representations and subsequent feature selection for annotation.
PromptCharm: Text-to-Image Generation through Multi-modal Prompting and Refinement
Wang, Zhijie, Huang, Yuheng, Song, Da, Ma, Lei, Zhang, Tianyi
The recent advancements in Generative AI have significantly advanced the field of text-to-image generation. The state-of-the-art text-to-image model, Stable Diffusion, is now capable of synthesizing high-quality images with a strong sense of aesthetics. Crafting text prompts that align with the model's interpretation and the user's intent thus becomes crucial. However, prompting remains challenging for novice users due to the complexity of the stable diffusion model and the non-trivial efforts required for iteratively editing and refining the text prompts. To address these challenges, we propose PromptCharm, a mixed-initiative system that facilitates text-to-image creation through multi-modal prompt engineering and refinement. To assist novice users in prompting, PromptCharm first automatically refines and optimizes the user's initial prompt. Furthermore, PromptCharm supports the user in exploring and selecting different image styles within a large database. To assist users in effectively refining their prompts and images, PromptCharm renders model explanations by visualizing the model's attention values. If the user notices any unsatisfactory areas in the generated images, they can further refine the images through model attention adjustment or image inpainting within the rich feedback loop of PromptCharm. To evaluate the effectiveness and usability of PromptCharm, we conducted a controlled user study with 12 participants and an exploratory user study with another 12 participants. These two studies show that participants using PromptCharm were able to create images with higher quality and better aligned with the user's expectations compared with using two variants of PromptCharm that lacked interaction or visualization support.
Boosting of Thoughts: Trial-and-Error Problem Solving with Large Language Models
Chen, Sijia, Li, Baochun, Niu, Di
The reasoning performance of Large Language Models (LLMs) on a wide range of problems critically relies on chain-of-thought prompting, which involves providing a few chain of thought demonstrations as exemplars in prompts. Recent work, e.g., Tree of Thoughts, has pointed out the importance of exploration and self-evaluation in reasoning step selection for complex problem solving. In this paper, we present Boosting of Thoughts (BoT), an automated prompting framework for problem solving with LLMs by iteratively exploring and self-evaluating many trees of thoughts in order to acquire an ensemble of trial-and-error reasoning experiences, which will serve as a new form of prompting to solve the complex problem. Starting from a simple prompt without requiring examples, BoT iteratively explores and evaluates a large collection of reasoning steps, and more importantly, uses error analysis obtained from the LLM on them to explicitly revise prompting, which in turn enhances reasoning step generation, until a final answer is attained. Our experiments with GPT-4 and Llama2 across extensive complex mathematical problems demonstrate that BoT consistently achieves higher or comparable problem-solving rates than other advanced prompting approaches.
Statistical and Machine Learning Models for Predicting Fire and Other Emergency Events
Sharma, Dilli Prasad, Beigi-Mohammadi, Nasim, Geng, Hongxiang, Dixon, Dawn, Madro, Rob, Emmenegger, Phil, Tobar, Carlos, Li, Jeff, Leon-Garcia, Alberto
Emergency events in a city cause considerable economic loss to individuals, their families, and the community. Accurate and timely prediction of events can help the emergency fire and rescue services in preparing for and mitigating the consequences of emergency events. In this paper, we present a systematic development of predictive models for various types of emergency events in the City of Edmonton, Canada. We present methods for (i) data collection and dataset development; (ii) descriptive analysis of each event type and its characteristics at different spatiotemporal levels; (iii) feature analysis and selection based on correlation coefficient analysis and feature importance analysis; and (iv) development of prediction models for the likelihood of occurrence of each event type at different temporal and spatial resolutions. We analyze the association of event types with socioeconomic and demographic data at the neighborhood level, identify a set of predictors for each event type, and develop predictive models with negative binomial regression. We conduct evaluations at neighborhood and fire station service area levels. Our results show that the models perform well for most of the event types with acceptable prediction errors for weekly and monthly periods. The evaluation shows that the prediction accuracy is consistent at the level of the fire station, so the predictions can be used in management by fire rescue service departments for planning resource allocation for these time periods. We also examine the impact of the COVID-19 pandemic on the occurrence of events and on the accuracy of event predictor models. Our findings show that COVID-19 had a significant impact on the performance of the event prediction models.
Monitored Markov Decision Processes
Parisi, Simone, Mohammedalamen, Montaser, Kazemipour, Alireza, Taylor, Matthew E., Bowling, Michael
In reinforcement learning (RL), an agent learns to perform a task by interacting with an environment and receiving feedback (a numerical reward) for its actions. However, the assumption that rewards are always observable is often not applicable in real-world problems. For example, the agent may need to ask a human to supervise its actions or activate a monitoring system to receive feedback. There may even be a period of time before rewards become observable, or a period of time after which rewards are no longer given. In other words, there are cases where the environment generates rewards in response to the agent's actions but the agent cannot observe them. In this paper, we formalize a novel but general RL framework - Monitored MDPs - where the agent cannot always observe rewards. We discuss the theoretical and practical consequences of this setting, show challenges raised even in toy environments, and propose algorithms to begin to tackle this novel setting. This paper introduces a powerful new formalism that encompasses both new and existing problems and lays the foundation for future research.
Early Detection of Bark Beetle Attack Using Remote Sensing and Machine Learning: A Review
Marvasti-Zadeh, Seyed Mojtaba, Goodsman, Devin, Ray, Nilanjan, Erbilgin, Nadir
This paper provides a comprehensive review of past and current advances in the early detection of bark beetle-induced tree mortality from three primary perspectives: bark beetle & host interactions, RS, and ML/DL. In contrast to prior efforts, this review encompasses all RS systems and emphasizes ML/DL methods to investigate their strengths and weaknesses. We parse existing literature based on multi- or hyper-spectral analyses and distill their knowledge based on: bark beetle species & attack phases with a primary emphasis on early stages of attacks, host trees, study regions, RS platforms & sensors, spectral/spatial/temporal resolutions, spectral signatures, spectral vegetation indices (SVIs), ML approaches, learning schemes, task categories, models, algorithms, classes/clusters, features, and DL networks & architectures. Although DL-based methods and the random forest (RF) algorithm showed promising results, highlighting their potential to detect subtle changes across visible, thermal, and short-wave infrared (SWIR) spectral regions, they still have limited effectiveness and high uncertainties. To inspire novel solutions to these shortcomings, we delve into the principal challenges & opportunities from different perspectives, enabling a deeper understanding of the current state of research and guiding future research directions.