Goto

Collaborating Authors

 Basilicata


Towards Automated Patent Workflows: AI-Orchestrated Multi-Agent Framework for Intellectual Property Management and Analysis

arXiv.org Artificial Intelligence

Patents are the currency of innovation, and like any currency, they need to be managed and protected (Gavin Potenza). Patents, as legal documents that secure intellectual property rights, play a critical role in technological innovation. The growing complexity of patent documents and the surge in patent applications have created a need for automated solutions in patent analysis. In this work, we present PatExpert, an autonomous multi-agent conversational framework designed to streamline and optimize patent-related tasks. The framework consists of a metaagent that coordinates task-specific expert agents for various patent-related tasks and a critique agent for error handling and feedback provision. The meta-agent orchestrates specialized expert agents, each fine-tuned for specific tasks such as patent classification, acceptance, claim generation, abstractive summarization, multi-patent analysis, and scientific hypothesis generation. For multi-patent analysis, the framework incorporates advanced methods like Graph Retrieval-Augmented Generation (GRAG) to enhance response accuracy and relevance by combining semantic similarity with knowledge graphs. Error handling is managed by critique agents (Gold-LLM-as-a-Judge and Reward-LLM-as-a-Judge), which evaluate output responses for accuracy and provide iterative feedback. The framework also prioritizes explainability, ensuring transparent justifications for decisions made during patent analysis. Its comprehensive capabilities make it a valuable tool for automating complex patent workflows, enhancing efficiency, accuracy, and compliance in patent-related tasks. Empirical evidence demonstrates significant improvements in patent processing tasks, concluding that the framework offers a robust solution for automating and optimizing patent analysis.


LLCoach: Generating Robot Soccer Plans using Multi-Role Large Language Models

arXiv.org Artificial Intelligence

The deployment of robots into human scenarios necessitates advanced planning strategies, particularly when we ask robots to operate in dynamic, unstructured environments. RoboCup offers the chance to deploy robots in one of those scenarios, a human-shaped game represented by a soccer match. In such scenarios, robots must operate using predefined behaviors that can fail in unpredictable conditions. This paper introduces a novel application of Large Language Models (LLMs) to address the challenge of generating actionable plans in such settings, specifically within the context of the RoboCup Standard Platform League (SPL) competitions where robots are required to autonomously execute soccer strategies that emerge from the interactions of individual agents. In particular, we propose a multi-role approach leveraging the capabilities of LLMs to generate and refine plans for a robotic soccer team. The potential of the proposed method is demonstrated through an experimental evaluation, carried out simulating multiple matches where robots with AI-generated plans play against robots running human-built code.


Play Everywhere: A Temporal Logic based Game Environment Independent Approach for Playing Soccer with Robots

arXiv.org Artificial Intelligence

Robots playing soccer often rely on hard-coded behaviors that struggle to generalize when the game environment change. In this paper, we propose a temporal logic based approach that allows robots' behaviors and goals to adapt to the semantics of the environment. In particular, we present a hierarchical representation of soccer in which the robot selects the level of operation based on the perceived semantic characteristics of the environment, thus modifying dynamically the set of rules and goals to apply. The proposed approach enables the robot to operate in unstructured environments, just as it happens when humans go from soccer played on an official field to soccer played on a street. Three different use cases set in different scenarios are presented to demonstrate the effectiveness of the proposed approach.


A network-constrain Weibull AFT model for biomarkers discovery

arXiv.org Machine Learning

We propose AFTNet, a novel network-constraint survival analysis method based on the Weibull accelerated failure time (AFT) model solved by a penalized likelihood approach for variable selection and estimation. When using the log-linear representation, the inference problem becomes a structured sparse regression problem for which we explicitly incorporate the correlation patterns among predictors using a double penalty that promotes both sparsity and grouping effect. Moreover, we establish the theoretical consistency for the AFTNet estimator and present an efficient iterative computational algorithm based on the proximal gradient descent method. Finally, we evaluate AFTNet performance both on synthetic and real data examples.


Greg, ML – Machine Learning for Healthcare at a Scale

#artificialintelligence

The push for the widespread adoption of digital records and digital reports in medicine [11, 17] is paving the ground for new applications that would not be conceivable a few years ago. This paper presents one of these applications, called Greg, ML. Greg, ML [15] is a research project developed by Svelto! a spin-off of the data-management group at University of Basilicata. It is a machine-learning-based platform for generating automatic diagnostic suggestions based on patient profiles. Machine learning is a well established branch of artificial intelligence.