Hauts-de-France
Power Mean Estimation in Stochastic Monte-Carlo Tree_Search
Dam, Tuan, Maillard, Odalric-Ambrym, Kaufmann, Emilie
Monte-Carlo Tree Search (MCTS) is a widely-used strategy for online planning that combines Monte-Carlo sampling with forward tree search. Its success relies on the Upper Confidence bound for Trees (UCT) algorithm, an extension of the UCB method for multi-arm bandits. However, the theoretical foundation of UCT is incomplete due to an error in the logarithmic bonus term for action selection, leading to the development of Fixed-Depth-MCTS with a polynomial exploration bonus to balance exploration and exploitation~\citep{shah2022journal}. Both UCT and Fixed-Depth-MCTS suffer from biased value estimation: the weighted sum underestimates the optimal value, while the maximum valuation overestimates it~\citep{coulom2006efficient}. The power mean estimator offers a balanced solution, lying between the average and maximum values. Power-UCT~\citep{dam2019generalized} incorporates this estimator for more accurate value estimates but its theoretical analysis remains incomplete. This paper introduces Stochastic-Power-UCT, an MCTS algorithm using the power mean estimator and tailored for stochastic MDPs. We analyze its polynomial convergence in estimating root node values and show that it shares the same convergence rate of $\mathcal{O}(n^{-1/2})$, with $n$ is the number of visited trajectories, as Fixed-Depth-MCTS, with the latter being a special case of the former. Our theoretical results are validated with empirical tests across various stochastic MDP environments.
A tutorial on learning from preferences and choices with Gaussian Processes
Benavoli, Alessio, Azzimonti, Dario
Preference modelling lies at the intersection of economics, decision theory, machine learning and statistics. By understanding individuals' preferences and how they make choices, we can build products that closely match their expectations, paving the way for more efficient and personalised applications across a wide range of domains. The objective of this tutorial is to present a cohesive and comprehensive framework for preference learning with Gaussian Processes (GPs), demonstrating how to seamlessly incorporate rationality principles (from economics and decision theory) into the learning process. By suitably tailoring the likelihood function, this framework enables the construction of preference learning models that encompass random utility models, limits of discernment, and scenarios with multiple conflicting utilities for both object- and label-preference. This tutorial builds upon established research while simultaneously introducing some novel GP-based models to address specific gaps in the existing literature.
Ensembling and Test Augmentation for Covid-19 Detection and Covid-19 Domain Adaptation from 3D CT-Scans
Bougourzi, Fares, Moula, Feryal Windal, Benhabiles, Halim, Dornaika, Fadi, Taleb-Ahmed, Abdelmalik
Since the emergence of Covid-19 in late 2019, medical image analysis using artificial intelligence (AI) has emerged as a crucial research area, particularly with the utility of CT-scan imaging for disease diagnosis. This paper contributes to the 4th COV19D competition, focusing on Covid-19 Detection and Covid-19 Domain Adaptation Challenges. Our approach centers on lung segmentation and Covid-19 infection segmentation employing the recent CNN-based segmentation architecture PDAtt-Unet, which simultaneously segments lung regions and infections. Departing from traditional methods, we concatenate the input slice (grayscale) with segmented lung and infection, generating three input channels akin to color channels. Additionally, we employ three 3D CNN backbones Customized Hybrid-DeCoVNet, along with pretrained 3D-Resnet-18 and 3D-Resnet-50 models to train Covid-19 recognition for both challenges. Furthermore, we explore ensemble approaches and testing augmentation to enhance performance. Comparison with baseline results underscores the substantial efficiency of our approach, with a significant margin in terms of F1-score (14 %). This study advances the field by presenting a comprehensive methodology for accurate Covid-19 detection and adaptation, leveraging cutting-edge AI techniques in medical image analysis.
Locating Changes in Highly Dependent Data with Unknown Number of Change Points
The problem of multiple change point estimation is considered for sequences with unknown number of change points. A consistency framework is suggested that is suitable for highly dependent time-series, and an asymptotically consistent algorithm is proposed. In order for the consistency to be established the only assumption required is that the data is generated by stationary ergodic time-series distributions. No modeling, independence or parametric assumptions are made; the data are allowed to be dependent and the dependence can be of arbitrary form. The theoretical results are complemented with experimental evaluations.
Optimizing F-Measures by Cost-Sensitive Classification
We present a theoretical analysis of F -measures for binary, multiclass and multilabel classification. These performance measures are non-linear, but in many scenarios they are pseudo-linear functions of the per-class false negative/false positive rate. Based on this observation, we present a general reduction of F - measure maximization to cost-sensitive classification with unknown costs. We then propose an algorithm with provable guarantees to obtain an approximately optimal classifier for the F -measure by solving a series of cost-sensitive classification problems. The strength of our analysis is to be valid on any dataset and any class of classifiers, extending the existing theoretical results on F -measures, which are asymptotic in nature. We present numerical experiments to illustrate the relative importance of cost asymmetry and thresholding when learning linear classifiers on various F -measure optimization tasks.
On the Impact of Output Perturbation on Fairness in Binary Linear Classification
Emelianov, Vitalii, Perrot, Michaël
We theoretically study how differential privacy interacts with both individual and group fairness in binary linear classification. More precisely, we focus on the output perturbation mechanism, a classic approach in privacy-preserving machine learning. We derive high-probability bounds on the level of individual and group fairness that the perturbed models can achieve compared to the original model. Hence, for individual fairness, we prove that the impact of output perturbation on the level of fairness is bounded but grows with the dimension of the model. For group fairness, we show that this impact is determined by the distribution of so-called angular margins, that is signed margins of the non-private model re-scaled by the norm of each example.
A Temporal Filter to Extract Doped Conducting Polymer Information Features from an Electronic Nose
Ammar, Wiem Haj, Boujnah, Aicha, Baron, Antoine, Boubaker, Aimen, Kalboussi, Adel, Lmimouni, Kamal, Pecqueur, Sebastien
Identifying relevant machine-learning features for multi-sensing platforms is both an applicative limitation to recognize environments and a necessity to interpret the physical relevance of transducers' complementarity in their information processing. Particularly for long acquisitions, feature extraction must be fully automatized without human intervention and resilient to perturbations without increasing significantly the computational cost of a classifier. In this study, we investigate on the relative resistance and current modulation of a 24-dimensional conductimetric electronic nose, which uses the exponential moving average as a floating reference in a low-cost information descriptor for environment recognition. In particular, we identified that depending on the structure of a linear classifier, the 'modema' descriptor is optimized for different material sensing elements' contributions to classify information patterns. The low-pass filtering optimization leads to opposite behaviors between unsupervised and supervised learning: the latter one favors longer integration of the reference, allowing to recognize five different classes over 90%, while the first one prefers using the latest events as its reference to clusterize patterns by environment nature. Its electronic implementation shall greatly diminish the computational requirements of conductimetric electronic noses for on-board environment recognition without human supervision.
Collaborative Grid Mapping for Moving Object Tracking Evaluation
Huet, Rémy, Lima, Antoine, Xu, Philippe, Cherfaoui, Véronique, Bonnifait, Philippe
Perception of other road users is a crucial task for intelligent vehicles. Perception systems can use on-board sensors only or be in cooperation with other vehicles or with roadside units. In any case, the performance of perception systems has to be evaluated against ground-truth data, which is a particularly tedious task and requires numerous manual operations. In this article, we propose a novel semi-automatic method for pseudo ground-truth estimation. The principle consists in carrying out experiments with several vehicles equipped with LiDAR sensors and with fixed perception systems located at the roadside in order to collaboratively build reference dynamic data. The method is based on grid mapping and in particular on the elaboration of a background map that holds relevant information that remains valid during a whole dataset sequence. Data from all agents is converted in time-stamped observations grids. A data fusion method that manages uncertainties combines the background map with observations to produce dynamic reference information at each instant. Several datasets have been acquired with three experimental vehicles and a roadside unit. An evaluation of this method is finally provided in comparison to a handmade ground truth.