Eastern Province
Hidden city built 5,000 years ago by lost advanced civilization discovered underneath vast desert
For centuries, the Rub' al-Khali desert near Saudi Arabia and Dubai -- known as the Empty Quarter -- was dismissed as a lifeless sea of sand. In 2002, Sheikh Mohammed bin Rashid Al Maktoum, ruler of Dubai, spotted unusual dune formations and a large black deposit while flying over the desert. That led to the discovery of Saruq Al-Hadid, an archaeological site rich in remnants of copper and iron smelting, which is now believed to be part of a 5,000-year-old civilization buried beneath the sands. Researchers have now found traces of this ancient society approximately 10 feet beneath the desert surface, hidden in plain sight and long overlooked due to the harsh environment and shifting dunes of the Empty Quarter. This discovery brings fresh life to the legend of a mythical city known as'Atlantis of the Sands.'
QDCNN: Quantum Deep Learning for Enhancing Safety and Reliability in Autonomous Transportation Systems
Meghanath, Ashtakala, Das, Subham, Behera, Bikash K., Khan, Muhammad Attique, Al-Kuwari, Saif, Farouk, Ahmed
In transportation cyber-physical systems (CPS), ensuring safety and reliability in real-time decision-making is essential for successfully deploying autonomous vehicles and intelligent transportation networks. However, these systems face significant challenges, such as computational complexity and the ability to handle ambiguous inputs like shadows in complex environments. This paper introduces a Quantum Deep Convolutional Neural Network (QDCNN) designed to enhance the safety and reliability of CPS in transportation by leveraging quantum algorithms. At the core of QDCNN is the UU{\dag} method, which is utilized to improve shadow detection through a propagation algorithm that trains the centroid value with preprocessing and postprocessing operations to classify shadow regions in images accurately. The proposed QDCNN is evaluated on three datasets on normal conditions and one road affected by rain to test its robustness. It outperforms existing methods in terms of computational efficiency, achieving a shadow detection time of just 0.0049352 seconds, faster than classical algorithms like intensity-based thresholding (0.03 seconds), chromaticity-based shadow detection (1.47 seconds), and local binary pattern techniques (2.05 seconds). This remarkable speed, superior accuracy, and noise resilience demonstrate the key factors for safe navigation in autonomous transportation in real-time. This research demonstrates the potential of quantum-enhanced models in addressing critical limitations of classical methods, contributing to more dependable and robust autonomous transportation systems within the CPS framework.
Quantum Recurrent Neural Networks with Encoder-Decoder for Time-Dependent Partial Differential Equations
Chen, Yuan, Khaliq, Abdul, Furati, Khaled M.
Quantum Recurrent Neural Networks with Encoder-Decoder for Time-Dependent Partial Differential Equations Yuan Chen 1, Abdul Khaliq 1,2, and Khaled M. Furati 3 1 Computational and Data Science Program, Middle Tennessee State University, Murfreesboro, 37132, TN, USA 2 Department of Mathematical Science, Middle Tennessee State University, Murfreesboro, 37132, TN, USA 3 Department of Mathematics, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia Nonlinear time-dependent partial differential equations are essential in modeling complex phenomena across diverse fields, yet they pose significant challenges due to their computational complexity, especially in higher dimensions. This study explores Quantum Recurrent Neural Networks within an encoder-decoder framework, integrating V ariational Quantum Circuits into Gated Recurrent Units and Long Short-T erm Memory networks. W e evaluate the algorithms on the Hamilton-Jacobi-Bellman equation, Burgers' equation, the Gray-Scott reaction-diffusion system, and the three dimensional Michaelis-Menten reaction-diffusion equation. The results demonstrate the superior performance of the quantum-based algorithms in capturing nonlinear dynamics, handling high-dimensional spaces, and providing stable solutions, highlighting their potential as an innovative tool in solving challenging and complex systems. 1 Introduction Partial differential equations (PDEs) are fundamental mathematical tools for modeling diverse phenomena in many fields such as physics, biology, chemistry, and economics. However, for many complex and high-dimensional PDEs, analytical solutions are often unattainable due to Yuan Chen: yc3y@mtmail.mtsu.edu To address this, numerical methods such as the finite-difference method (FDM) [1], finite-element method (FEM) [2], and finite-volume method (FVM) [3] have been developed to approximate solutions. These techniques have been effective in a variety of applications but face limitations in computational complexity, stability, and scalability, especially when applied to non-linear or high-dimensional problems.
EcoWeedNet: A Lightweight and Automated Weed Detection Method for Sustainable Next-Generation Agricultural Consumer Electronics
Khater, Omar H., Siddiqui, Abdul Jabbar, Hossain, M. Shamim
Sustainable agriculture plays a crucial role in ensuring world food security for consumers. A critical challenge faced by sustainable precision agriculture is weed growth, as weeds share essential resources with the crops, such as water, soil nutrients, and sunlight, which notably affect crop yields. The traditional methods employed to combat weeds include the usage of chemical herbicides and manual weed removal methods. However, these could damage the environment and pose health hazards. The adoption of automated computer vision technologies and ground agricultural consumer electronic vehicles in precision agriculture offers sustainable, low-carbon solutions. However, prior works suffer from issues such as low accuracy and precision and high computational expense. This work proposes EcoWeedNet, a novel model with enhanced weed detection performance without adding significant computational complexity, aligning with the goals of low-carbon agricultural practices. Additionally, our model is lightweight and optimal for deployment on ground-based consumer electronic agricultural vehicles and robots. The effectiveness of the proposed model is demonstrated through comprehensive experiments on the CottonWeedDet12 benchmark dataset reflecting real-world scenarios. EcoWeedNet achieves performance close to that of large models yet with much fewer parameters. (approximately 4.21% of the parameters and 6.59% of the GFLOPs of YOLOv4). This work contributes effectively to the development of automated weed detection methods for next-generation agricultural consumer electronics featuring lower energy consumption and lower carbon footprint. This work paves the way forward for sustainable agricultural consumer technologies.
Advanced Arabic Alphabet Sign Language Recognition Using Transfer Learning and Transformer Models
Balat, Mazen, Awaad, Rewaa, Adel, Hend, Zaky, Ahmed B., Aly, Salah A.
This paper presents an Arabic Alphabet Sign Language recognition approach, using deep learning methods in conjunction with transfer learning and transformer-based models. We study the performance of the different variants on two publicly available datasets, namely ArSL2018 and AASL. This task will make full use of state-of-the-art CNN architectures like ResNet50, MobileNetV2, and EfficientNetB7, and the latest transformer models such as Google ViT and Microsoft Swin Transformer. These pre-trained models have been fine-tuned on the above datasets in an attempt to capture some unique features of Arabic sign language motions. Experimental results present evidence that the suggested methodology can receive a high recognition accuracy, by up to 99.6\% and 99.43\% on ArSL2018 and AASL, respectively. That is far beyond the previously reported state-of-the-art approaches. This performance opens up even more avenues for communication that may be more accessible to Arabic-speaking deaf and hard-of-hearing, and thus encourages an inclusive society.
Bird's-Eye View to Street-View: A Survey
Bajbaa, Khawlah, Usman, Muhammad, Anwar, Saeed, Radwan, Ibrahim, Bais, Abdul
In recent years, street view imagery has grown to become one of the most important sources of geospatial data collection and urban analytics, which facilitates generating meaningful insights and assisting in decision-making. Synthesizing a street-view image from its corresponding satellite image is a challenging task due to the significant differences in appearance and viewpoint between the two domains. In this study, we screened 20 recent research papers to provide a thorough review of the state-of-the-art of how street-view images are synthesized from their corresponding satellite counterparts. The main findings are: (i) novel deep learning techniques are required for synthesizing more realistic and accurate street-view images; (ii) more datasets need to be collected for public usage; and (iii) more specific evaluation metrics need to be investigated for evaluating the generated images appropriately. We conclude that, due to applying outdated deep learning techniques, the recent literature failed to generate detailed and diverse street-view images.
Visual Attention Methods in Deep Learning: An In-Depth Survey
Hassanin, Mohammed, Anwar, Saeed, Radwan, Ibrahim, Khan, Fahad S, Mian, Ajmal
Inspired by the human cognitive system, attention is a mechanism that imitates the human cognitive awareness about specific information, amplifying critical details to focus more on the essential aspects of data. Deep learning has employed attention to boost performance for many applications. Interestingly, the same attention design can suit processing different data modalities and can easily be incorporated into large networks. Furthermore, multiple complementary attention mechanisms can be incorporated into one network. Hence, attention techniques have become extremely attractive. However, the literature lacks a comprehensive survey on attention techniques to guide researchers in employing attention in their deep models. Note that, besides being demanding in terms of training data and computational resources, transformers only cover a single category in self-attention out of the many categories available. We fill this gap and provide an in-depth survey of 50 attention techniques, categorizing them by their most prominent features. We initiate our discussion by introducing the fundamental concepts behind the success of the attention mechanism. Next, we furnish some essentials such as the strengths and limitations of each attention category, describe their fundamental building blocks, basic formulations with primary usage, and applications specifically for computer vision. We also discuss the challenges and general open questions related to attention mechanisms. Finally, we recommend possible future research directions for deep attention. All the information about visual attention methods in deep learning is provided at \href{https://github.com/saeed-anwar/VisualAttention}{https://github.com/saeed-anwar/VisualAttention}
Deep Models for Multi-View 3D Object Recognition: A Review
Alzahrani, Mona, Usman, Muhammad, Kammoun, Salma, Anwar, Saeed, Helmy, Tarek
Human decision-making often relies on visual information from multiple perspectives or views. In contrast, machine learning-based object recognition utilizes information from a single image of the object. However, the information conveyed by a single image may not be sufficient for accurate decision-making, particularly in complex recognition problems. The utilization of multi-view 3D representations for object recognition has thus far demonstrated the most promising results for achieving state-of-the-art performance. This review paper comprehensively covers recent progress in multi-view 3D object recognition methods for 3D classification and retrieval tasks. Specifically, we focus on deep learning-based and transformer-based techniques, as they are widely utilized and have achieved state-of-the-art performance. We provide detailed information about existing deep learning-based and transformer-based multi-view 3D object recognition models, including the most commonly used 3D datasets, camera configurations and number of views, view selection strategies, pre-trained CNN architectures, fusion strategies, and recognition performance on 3D classification and 3D retrieval tasks. Additionally, we examine various computer vision applications that use multi-view classification. Finally, we highlight key findings and future directions for developing multi-view 3D object recognition methods to provide readers with a comprehensive understanding of the field.
Enhancing IoT Intelligence: A Transformer-based Reinforcement Learning Methodology
Rjoub, Gaith, Islam, Saidul, Bentahar, Jamal, Almaiah, Mohammed Amin, Alrawashdeh, Rana
The proliferation of the Internet of Things (IoT) has led to an explosion of data generated by interconnected devices, presenting both opportunities and challenges for intelligent decision-making in complex environments. Traditional Reinforcement Learning (RL) approaches often struggle to fully harness this data due to their limited ability to process and interpret the intricate patterns and dependencies inherent in IoT applications. This paper introduces a novel framework that integrates transformer architectures with Proximal Policy Optimization (PPO) to address these challenges. By leveraging the self-attention mechanism of transformers, our approach enhances RL agents' capacity for understanding and acting within dynamic IoT environments, leading to improved decision-making processes. We demonstrate the effectiveness of our method across various IoT scenarios, from smart home automation to industrial control systems, showing marked improvements in decision-making efficiency and adaptability. Our contributions include a detailed exploration of the transformer's role in processing heterogeneous IoT data, a comprehensive evaluation of the framework's performance in diverse environments, and a benchmark against traditional RL methods. The results indicate significant advancements in enabling RL agents to navigate the complexities of IoT ecosystems, highlighting the potential of our approach to revolutionize intelligent automation and decision-making in the IoT landscape.
Enhancing Courier Scheduling in Crowdsourced Last-Mile Delivery through Dynamic Shift Extensions: A Deep Reinforcement Learning Approach
Saleh, Zead, Hanbali, Ahmad Al, Baubaid, Ahmad
Crowdsourced delivery platforms face complex scheduling challenges to match couriers and customer orders. We consider two types of crowdsourced couriers, namely, committed and occasional couriers, each with different compensation schemes. Crowdsourced delivery platforms usually schedule committed courier shifts based on predicted demand. Therefore, platforms may devise an offline schedule for committed couriers before the planning period. However, due to the unpredictability of demand, there are instances where it becomes necessary to make online adjustments to the offline schedule. In this study, we focus on the problem of dynamically adjusting the offline schedule through shift extensions for committed couriers. This problem is modeled as a sequential decision process. The objective is to maximize platform profit by determining the shift extensions of couriers and the assignments of requests to couriers. To solve the model, a Deep Q-Network (DQN) learning approach is developed. Comparing this model with the baseline policy where no extensions are allowed demonstrates the benefits that platforms can gain from allowing shift extensions in terms of reward, reduced lost order costs, and lost requests. Additionally, sensitivity analysis showed that the total extension compensation increases in a nonlinear manner with the arrival rate of requests, and in a linear manner with the arrival rate of occasional couriers. On the compensation sensitivity, the results showed that the normal scenario exhibited the highest average number of shift extensions and, consequently, the fewest average number of lost requests. These findings serve as evidence of the successful learning of such dynamics by the DQN algorithm.