Goto

Collaborating Authors

 West Java


Enhancing Phishing Detection through Feature Importance Analysis and Explainable AI: A Comparative Study of CatBoost, XGBoost, and EBM Models

arXiv.org Artificial Intelligence

Phishing attacks remain a persistent threat to online security, demanding robust detection methods. This study investigates the use of machine learning to identify phishing URLs, emphasizing the crucial role of feature selection and model interpretability for improved performance. Employing Recursive Feature Elimination, the research pinpointed key features like "length_url," "time_domain_activation" and "Page_rank" as strong indicators of phishing attempts. The study evaluated various algorithms, including CatBoost, XGBoost, and Explainable Boosting Machine, assessing their robustness and scalability. XGBoost emerged as highly efficient in terms of runtime, making it well-suited for large datasets. CatBoost, on the other hand, demonstrated resilience by maintaining high accuracy even with reduced features. To enhance transparency and trustworthiness, Explainable AI techniques, such as SHAP, were employed to provide insights into feature importance. The study's findings highlight that effective feature selection and model interpretability can significantly bolster phishing detection systems, paving the way for more efficient and adaptable defenses against evolving cyber threats


Can LLM Generate Culturally Relevant Commonsense QA Data? Case Study in Indonesian and Sundanese

arXiv.org Artificial Intelligence

Large Language Models (LLMs) are increasingly being used to generate synthetic data for training and evaluating models. However, it is unclear whether they can generate a good quality of question answering (QA) dataset that incorporates knowledge and cultural nuance embedded in a language, especially for low-resource languages. In this study, we investigate the effectiveness of using LLMs in generating culturally relevant commonsense QA datasets for Indonesian and Sundanese languages. To do so, we create datasets for these languages using various methods involving both LLMs and human annotators, resulting in ~4.5K questions per language (~9K in total), making our dataset the largest of its kind. Our experiments show that automatic data adaptation from an existing English dataset is less effective for Sundanese. Interestingly, using the direct generation method on the target language, GPT-4 Turbo can generate questions with adequate general knowledge in both languages, albeit not as culturally 'deep' as humans. We also observe a higher occurrence of fluency errors in the Sundanese dataset, highlighting the discrepancy between medium- and lower-resource languages.


IndoCulture: Exploring Geographically-Influenced Cultural Commonsense Reasoning Across Eleven Indonesian Provinces

arXiv.org Artificial Intelligence

Although commonsense reasoning is greatly shaped by cultural and geographical factors, previous studies on language models have predominantly centered on English cultures, potentially resulting in an Anglocentric bias. In this paper, we introduce IndoCulture, aimed at understanding the influence of geographical factors on language model reasoning ability, with a specific emphasis on the diverse cultures found within eleven Indonesian provinces. In contrast to prior works that relied on templates (Yin et al., 2022) and online scrapping (Fung et al., 2024), we created IndoCulture by asking local people to manually develop the context and plausible options based on predefined topics. Evaluations of 23 language models reveal several insights: (1) even the best open-source model struggles with an accuracy of 53.2%, (2) models often provide more accurate predictions for specific provinces, such as Bali and West Java, and (3) the inclusion of location contexts enhances performance, especially in larger models like GPT-4, emphasizing the significance of geographical context in commonsense reasoning.


Sugarcane Health Monitoring With Satellite Spectroscopy and Machine Learning: A Review

arXiv.org Artificial Intelligence

Research into large-scale crop monitoring has flourished due to increased accessibility to satellite imagery. This review delves into previously unexplored and under-explored areas in sugarcane health monitoring and disease/pest detection using satellite-based spectroscopy and Machine Learning (ML). It discusses key considerations in system development, including relevant satellites, vegetation indices, ML methods, factors influencing sugarcane reflectance, optimal growth conditions, common diseases, and traditional detection methods. Many studies highlight how factors like crop age, soil type, viewing angle, water content, recent weather patterns, and sugarcane variety can impact spectral reflectance, affecting the accuracy of health assessments via spectroscopy. However, these variables have not been fully considered in the literature. In addition, the current literature lacks comprehensive comparisons between ML techniques and vegetation indices. We address these gaps in this review. We discuss that, while current findings suggest the potential for an ML-driven satellite spectroscopy system for monitoring sugarcane health, further research is essential. This paper offers a comprehensive analysis of previous research to aid in unlocking this potential and advancing the development of an effective sugarcane health monitoring system using satellite technology.


Bloom-epistemic and sentiment analysis hierarchical classification in course discussion forums

arXiv.org Artificial Intelligence

Online discussion forums are widely used for active textual interaction between lecturers and students, and to see how the students have progressed in a learning process. The objective of this study is to compare appropriate machine-learning models to assess sentiments and Bloom\'s epistemic taxonomy based on textual comments in educational discussion forums. Our proposed method is called the hierarchical approach of Bloom-Epistemic and Sentiment Analysis (BE-Sent). The research methodology consists of three main steps. The first step is the data collection from the internal discussion forum and YouTube comments of a Web Programming channel. The next step is text preprocessing to annotate the text and clear unimportant words. Furthermore, with the text dataset that has been successfully cleaned, sentiment analysis and epistemic categorization will be done in each sentence of the text. Sentiment analysis is divided into three categories: positive, negative, and neutral. Bloom\'s epistemic is divided into six categories: remembering, understanding, applying, analyzing, evaluating, and creating. This research has succeeded in producing a course learning subsystem that assesses opinions based on text reviews of discussion forums according to the category of sentiment and epistemic analysis.


Group-Feature (Sensor) Selection With Controlled Redundancy Using Neural Networks

arXiv.org Artificial Intelligence

In this paper, we present a novel embedded feature selection method based on a Multi-layer Perceptron (MLP) network and generalize it for group-feature or sensor selection problems, which can control the level of redundancy among the selected features or groups. Additionally, we have generalized the group lasso penalty for feature selection to encompass a mechanism for selecting valuable group features while simultaneously maintaining a control over redundancy. We establish the monotonicity and convergence of the proposed algorithm, with a smoothed version of the penalty terms, under suitable assumptions. Experimental results on several benchmark datasets demonstrate the promising performance of the proposed methodology for both feature selection and group feature selection over some state-of-the-art methods.


Performance Analysis of Transformer Based Models (BERT, ALBERT and RoBERTa) in Fake News Detection

arXiv.org Artificial Intelligence

Fake news is fake material in a news media format but is not processed properly by news agencies. The fake material can provoke or defame significant entities or individuals or potentially even for the personal interests of the creators, causing problems for society. Distinguishing fake news and real news is challenging due to limited of domain knowledge and time constraints. According to the survey, the top three areas most exposed to hoaxes and misinformation by residents are in Banten, DKI Jakarta and West Java. The model of transformers is referring to an approach in the field of artificial intelligence (AI) in natural language processing utilizing the deep learning architectures. Transformers exercise a powerful attention mechanism to process text in parallel and produce rich and contextual word representations. A previous study indicates a superior performance of a transformer model known as BERT over and above non transformer approach. However, some studies suggest the performance can be improved with the use of improved BERT models known as ALBERT and RoBERTa. However, the modified BERT models are not well explored for detecting fake news in Bahasa Indonesia. In this research, we explore those transformer models and found that ALBERT outperformed other models with 87.6% accuracy, 86.9% precision, 86.9% F1-score, and 174.5 run-time (s/epoch) respectively. Source code available at: https://github.com/Shafna81/fakenewsdetection.git


SynthBio: A Case Study in Human-AI Collaborative Curation of Text Datasets

arXiv.org Artificial Intelligence

NLP researchers need more, higher-quality text datasets. Human-labeled datasets are expensive to collect, while datasets collected via automatic retrieval from the web such as WikiBio are noisy and can include undesired biases. Moreover, data sourced from the web is often included in datasets used to pretrain models, leading to inadvertent cross-contamination of training and test sets. In this work we introduce a novel method for efficient dataset curation: we use a large language model to provide seed generations to human raters, thereby changing dataset authoring from a writing task to an editing task. We use our method to curate SynthBio - a new evaluation set for WikiBio - composed of structured attribute lists describing fictional individuals, mapped to natural language biographies. We show that our dataset of fictional biographies is less noisy than WikiBio, and also more balanced with respect to gender and nationality.


Using Particle Swarm Optimization as Pathfinding Strategy in a Space with Obstacles

arXiv.org Artificial Intelligence

Particle swarm optimization (PSO) is a search algorithm based on stochastic and population-based adaptive optimization. In this paper, a pathfinding strategy is proposed to improve the efficiency of path planning for a broad range of applications. This study aims to investigate the effect of PSO parameters (numbers of particle, weight constant, particle constant, and global constant) on algorithm performance to give solution paths. Increasing the PSO parameters makes the swarm move faster to the target point but takes a long time to converge because of too many random movements, and vice versa. From a variety of simulations with different parameters, the PSO algorithm is proven to be able to provide a solution path in a space with obstacles.