Goto

Collaborating Authors

 Odisha


Improving Health Information Access in the World's Largest Maternal Mobile Health Program via Bandit Algorithms

arXiv.org Artificial Intelligence

Harnessing the wide-spread availability of cell phones, many nonprofits have launched mobile health (mHealth) programs to deliver information via voice or text to beneficiaries in underserved communities, with maternal and infant health being a key area of such mHealth programs. Unfortunately, dwindling listenership is a major challenge, requiring targeted interventions using limited resources. This paper focuses on Kilkari, the world's largest mHealth program for maternal and child care - with over 3 million active subscribers at a time - launched by India's Ministry of Health and Family Welfare (MoHFW) and run by the non-profit ARRMAN. We present a system called CHAHAK that aims to reduce automated dropouts as well as boost engagement with the program through the strategic allocation of interventions to beneficiaries. Past work in a similar domain has focused on a much smaller scale mHealth program and used markovian restless multiarmed bandits to optimize a single limited intervention resource. However this paper demonstrates the challenges in adopting a markovian approach in Kilkari; therefore CHAHAK instead relies on non-markovian time-series restless bandits, and optimizes multiple interventions to improve listenership. We use real Kilkari data from the Odisha state in India to show CHAHAK's effectiveness in harnessing multiple interventions to boost listenership, benefiting marginalized communities. When deployed CHAHAK will assist the largest maternal mHealth program to date.


An approach for mistranslation removal from popular dataset for Indic MT Task

arXiv.org Artificial Intelligence

The conversion of content from one language to another utilizing a computer system is known as Machine Translation (MT). Various techniques have come up to ensure effective translations that retain the contextual and lexical interpretation of the source language. End-to-end Neural Machine Translation (NMT) is a popular technique and it is now widely used in real-world MT systems. Massive amounts of parallel datasets (sentences in one language alongside translations in another) are required for MT systems. These datasets are crucial for an MT system to learn linguistic structures and patterns of both languages during the training phase. One such dataset is Samanantar, the largest publicly accessible parallel dataset for Indian languages (ILs). Since the corpus has been gathered from various sources, it contains many incorrect translations. Hence, the MT systems built using this dataset cannot perform to their usual potential. In this paper, we propose an algorithm to remove mistranslations from the training corpus and evaluate its performance and efficiency. Two Indic languages (ILs), namely, Hindi (HIN) and Odia (ODI) are chosen for the experiment. A baseline NMT system is built for these two ILs, and the effect of different dataset sizes is also investigated. The quality of the translations in the experiment is evaluated using standard metrics such as BLEU, METEOR, and RIBES. From the results, it is observed that removing the incorrect translation from the dataset makes the translation quality better. It is also noticed that, despite the fact that the ILs-English and English-ILs systems are trained using the same corpus, ILs-English works more effectively across all the evaluation metrics.


Tirtha -- An Automated Platform to Crowdsource Images and Create 3D Models of Heritage Sites

arXiv.org Artificial Intelligence

Digital preservation of Cultural Heritage (CH) sites is crucial to protect them against damage from natural disasters or human activities. Creating 3D models of CH sites has become a popular method of digital preservation thanks to advancements in computer vision and photogrammetry. However, the process is time-consuming, expensive, and typically requires specialized equipment and expertise, posing challenges in resource-limited developing countries. Additionally, the lack of an open repository for 3D models hinders research and public engagement with their heritage. To address these issues, we propose Tirtha, a web platform for crowdsourcing images of CH sites and creating their 3D models. Tirtha utilizes state-of-the-art Structure from Motion (SfM) and Multi-View Stereo (MVS) techniques. It is modular, extensible and cost-effective, allowing for the incorporation of new techniques as photogrammetry advances. Tirtha is accessible through a web interface at https://tirtha.niser.ac.in and can be deployed on-premise or in a cloud environment. In our case studies, we demonstrate the pipeline's effectiveness by creating 3D models of temples in Odisha, India, using crowdsourced images. These models are available for viewing, interaction, and download on the Tirtha website. Our work aims to provide a dataset of crowdsourced images and 3D reconstructions for research in computer vision, heritage conservation, and related domains. Overall, Tirtha is a step towards democratizing digital preservation, primarily in resource-limited developing countries.