Bengaluru
Near-Optimal Lower Bounds For Convex Optimization For All Orders of Smoothness Robin Kothari Microsoft Research India Microsoft Quantum and Microsoft Research Bengaluru, KA, India
We study the complexity of optimizing highly smooth convex functions. For a positive integer p, we want to find an ɛ-approximate minimum of a convex function f, given oracle access to the function and its first p derivatives, assuming that the pth derivative of f is Lipschitz. Recently, three independent research groups (Jiang et al., PLMR 2019; Gasnikov et al., PLMR 2019; Bubeck et al., PLMR 2019) developed a new algorithm that
Efficient and Effective Augmentation Strategy for Adversarial Training Samyak Jain R.Venkatesh Babu Video Analytics Lab, Indian Institute of Science, Bangalore
Adversarial training of Deep Neural Networks is known to be significantly more data-hungry when compared to standard training. Furthermore, complex data augmentations such as AutoAugment, which have led to substantial gains in standard training of image classifiers, have not been successful with Adversarial Training. We first explain this contrasting behavior by viewing augmentation during training as a problem of domain generalization, and further propose Diverse Augmentationbased Joint Adversarial Training (DAJAT) to use data augmentations effectively in adversarial training. We aim to handle the conflicting goals of enhancing the diversity of the training dataset and training with data that is close to the test distribution by using a combination of simple and complex augmentations with separate batch normalization layers during training. We further utilize the popular Jensen-Shannon divergence loss to encourage the joint learning of the diverse augmentations, thereby allowing simple augmentations to guide the learning of complex ones. Lastly, to improve the computational efficiency of the proposed method, we propose and utilize a two-step defense, Ascending Constraint Adversarial Training (ACAT), that uses an increasing epsilon schedule and weight-space smoothing to prevent gradient masking. The proposed method DAJAT achieves substantially better robustness-accuracy trade-off when compared to existing methods on the RobustBench Leaderboard on ResNet-18 and WideResNet-34-10. The code for implementing DAJAT is available here: https://github.com/val-iisc/DAJAT.
Enhanced $A^{*}$ Algorithm for Mobile Robot Path Planning with Non-Holonomic Constraints
Kumar, Suraj, R, Sudheendra, R, Aditya, GVP, Bharat Kumar, L, Ravi Kumar
In this paper, a novel method for path planning of mobile robots is proposed, taking into account the non-holonomic turn radius constraints and finite dimensions of the robot. The approach involves rasterizing the environment to generate a 2D map and utilizes an enhanced version of the $A^{*}$ algorithm that incorporates non-holonomic constraints while ensuring collision avoidance. Two new instantiations of the $A^{*}$ algorithm are introduced and tested across various scenarios and environments, with results demonstrating the effectiveness of the proposed method.
Multispectral to Hyperspectral using Pretrained Foundational model
Gonzalez, Ruben, Albrecht, Conrad M, Braham, Nassim Ait Ali, Lambhate, Devyani, Almeida, Joao Lucas de Sousa, Fraccaro, Paolo, Blumenstiel, Benedikt, Brunschwiler, Thomas, Bangalore, Ranjini
Multispectral to Hyperspectral using Pretrained Foundational model Ruben Gonzalez* 1, Conrad M Albrecht 1, Nassim Ait Ali Braham 1, Devyani Lambhate* 2, Joao Lucas de Sousa Almeida 2, Paolo Fraccaro 2, Benedikt Blumenstiel 2, Thomas Brunschwiler 2, and Ranjini Bangalore 2 1 Remote Sensing Technology Institute, German Aerospace Center (DLR), Germany 2 IBM Research Labs, India, U.K., Zurich, Brazil February 28, 2025 Abstract Hyperspectral imaging provides detailed spectral information, offering significant potential for monitoring greenhouse gases like CH 4 and NO 2. However, its application is constrained by limited spatial coverage and infrequent revisit times. In contrast, multispectral imaging delivers broader spatial and temporal coverage but lacks the spectral granularity required for precise GHG detection. To address these challenges, this study proposes Spectral and Spatial-Spectral transformer models that reconstructs hyperspectral data from multispectral inputs. The models in this paper are pretrained on EnMAP and EMIT datasets and fine-tuned on spatio-temporally aligned (Sentinel-2, EnMAP) and (HLS-S30, EMIT) image pairs respectively. Our model has the potential to enhance atmospheric monitoring by combining the strengths of hyperspectral and multispectral imaging systems. 1 Introduction Satellite images are being used to create detailed maps of Earth's surface.
Provably Fast Finite Particle Variants of SVGD via Virtual Particle Stochastic Approximation Dheeraj Nagaraj Google Research Google Research Bangalore, India
Stein Variational Gradient Descent (SVGD) is a popular particle-based variational inference algorithm with impressive empirical performance across various domains. Although the population (i.e, infinite-particle) limit dynamics of SVGD is well characterized, its behavior in the finite-particle regime is far less understood. To this end, our work introduces the notion of virtual particles to develop novel stochastic approximations of population-limit SVGD dynamics in the space of probability measures, that are exactly realizable using finite particles.
Provably Fast Finite Particle Variants of SVGD via Virtual Particle Stochastic Approximation Dheeraj Nagaraj Google Research Google Research Bangalore, India
Stein Variational Gradient Descent (SVGD) is a popular particle-based variational inference algorithm with impressive empirical performance across various domains. Although the population (i.e, infinite-particle) limit dynamics of SVGD is well characterized, its behavior in the finite-particle regime is far less understood. To this end, our work introduces the notion of virtual particles to develop novel stochastic approximations of population-limit SVGD dynamics in the space of probability measures, that are exactly realizable using finite particles.
Battery State of Health Estimation Using LLM Framework
Yunusoglu, Aybars, Le, Dexter, Tiwari, Karn, Isik, Murat, Dikmen, I. Can
Battery health monitoring is critical for the efficient and reliable operation of electric vehicles (EVs). This study introduces a transformer-based framework for estimating the State of Health (SoH) and predicting the Remaining Useful Life (RUL) of lithium titanate (LTO) battery cells by utilizing both cycle-based and instantaneous discharge data. Testing on eight LTO cells under various cycling conditions over 500 cycles, we demonstrate the impact of charge durations on energy storage trends and apply Differential Voltage Analysis (DVA) to monitor capacity changes (dQ/dV) across voltage ranges. Our LLM model achieves superior performance, with a Mean Absolute Error (MAE) as low as 0.87\% and varied latency metrics that support efficient processing, demonstrating its strong potential for real-time integration into EVs. The framework effectively identifies early signs of degradation through anomaly detection in high-resolution data, facilitating predictive maintenance to prevent sudden battery failures and enhance energy efficiency.
Near-optimal Offline and Streaming Algorithms for Learning Non-Linear Dynamical Systems Suhas S Kowshik Google AI Research Lab, Department of EECS Bengaluru, India 560016
While the problem is well-studied in the linear case, where φ is identity, with optimal error rates even for non-mixing systems, existing results in the non-linear case hold only for mixing systems. In this work, we improve existing results for learning nonlinear systems in a number of ways: a) we provide the first offline algorithm that can learn non-linear dynamical systems without the mixing assumption, b) we significantly improve upon the sample complexity of existing results for mixing systems, c) in the much harder one-pass, streaming setting we study a SGD with Reverse Experience Replay (SGD RER) method, and demonstrate that for mixing systems, it achieves the same sample complexity as our offline algorithm, d) we justify the expansivity assumption by showing that for the popular ReLU link function -- a non-expansive but easy to learn link function with i.i.d.
Aligning Silhouette Topology for Self-Adaptive 3D Human Pose Recovery R. Venkatesh Babu Indian Institute of Science, Bangalore
Articulation-centric 2D/3D pose supervision forms the core training objective in most existing 3D human pose estimation techniques. Except for synthetic source environments, acquiring such rich supervision for each real target domain at deployment is highly inconvenient. However, we realize that standard foreground silhouette estimation techniques (on static camera feeds) remain unaffected by domain-shifts. Motivated by this, we propose a novel target adaptation framework that relies only on silhouette supervision to adapt a source-trained model-based regressor. However, in the absence of any auxiliary cue (multi-view, depth, or 2D pose), an isolated silhouette loss fails to provide a reliable pose-specific gradient and requires to be employed in tandem with a topology-centric loss. To this end, we develop a series of convolution-friendly spatial transformations in order to disentangle a topological-skeleton representation from the raw silhouette. Such a design paves the way to devise a Chamfer-inspired spatial topological-alignment loss via distance field computation, while effectively avoiding any gradient hindering spatial-to-pointset mapping. Experimental results demonstrate our superiority against prior-arts in self-adapting a source trained model to diverse unlabeled target domains, such as a) in-the-wild datasets, b) low-resolution image domains, and c) adversarially perturbed image domains (via UAP).