Goto

Collaborating Authors

 Chhattisgarh


HP-BERT: A framework for longitudinal study of Hinduphobia on social media via LLMs

arXiv.org Artificial Intelligence

During the COVID-19 pandemic, community tensions intensified, fuelling Hinduphobic sentiments and discrimination against individuals of Hindu descent within India and worldwide. Large language models (LLMs) have become prominent in natural language processing (NLP) tasks and social media analysis, enabling longitudinal studies of platforms like X (formerly Twitter) for specific issues during COVID-19. We present an abuse detection and sentiment analysis framework that offers a longitudinal analysis of Hinduphobia on X (Twitter) during and after the COVID-19 pandemic. This framework assesses the prevalence and intensity of Hinduphobic discourse, capturing elements such as derogatory jokes and racist remarks through sentiment analysis and abuse detection from pre-trained and fine-tuned LLMs. Additionally, we curate and publish a "Hinduphobic COVID-19 X (Twitter) Dataset" of 8,000 tweets annotated for Hinduphobic abuse detection, which is used to fine-tune a BERT model, resulting in the development of the Hinduphobic BERT (HP-BERT) model. We then further fine-tune HP-BERT using the SenWave dataset for multi-label sentiment analysis. Our study encompasses approximately 27.4 million tweets from six countries, including Australia, Brazil, India, Indonesia, Japan, and the United Kingdom. Our findings reveal a strong correlation between spikes in COVID-19 cases and surges in Hinduphobic rhetoric, highlighting how political narratives, misinformation, and targeted jokes contributed to communal polarisation. These insights provide valuable guidance for developing strategies to mitigate communal tensions in future crises, both locally and globally. We advocate implementing automated monitoring and removal of such content on social media to curb divisive discourse.


Machine Learning Algorithms for Detecting Mental Stress in College Students

arXiv.org Artificial Intelligence

In today's world, stress is a big problem that affects people's health and happiness. More and more people are feeling stressed out, which can lead to lots of health issues like breathing problems, feeling overwhelmed, heart attack, diabetes, etc. This work endeavors to forecast stress and non-stress occurrences among college students by applying various machine learning algorithms: Decision Trees, Random Forest, Support Vector Machines, AdaBoost, Naive Bayes, Logistic Regression, and K-nearest Neighbors. The primary objective of this work is to leverage a research study to predict and mitigate stress and non-stress based on the collected questionnaire dataset. We conducted a workshop with the primary goal of studying the stress levels found among the students. This workshop was attended by Approximately 843 students aged between 18 to 21 years old. A questionnaire was given to the students validated under the guidance of the experts from the All India Institute of Medical Sciences (AIIMS) Raipur, Chhattisgarh, India, on which our dataset is based. The survey consists of 28 questions, aiming to comprehensively understand the multidimensional aspects of stress, including emotional well-being, physical health, academic performance, relationships, and leisure. This work finds that Support Vector Machines have a maximum accuracy for Stress, reaching 95\%. The study contributes to a deeper understanding of stress determinants. It aims to improve college student's overall quality of life and academic success, addressing the multifaceted nature of stress.


A Wavelet Guided Attention Module for Skin Cancer Classification with Gradient-based Feature Fusion

arXiv.org Artificial Intelligence

Dermoscopy requires a welltrained physician with experience and visual ability, while Skin cancer is a highly dangerous type of cancer that requires skin biopsy involves taking a sample of skin from the patient's an accurate diagnosis from experienced physicians. To help body, which can be a slow and painful process. These difficulties physicians diagnose skin cancer more efficiently, a computeraided have spurred researchers in the field of artificial intelligence diagnosis (CAD) system can be very helpful. In this (AI) to create Computer-Aided Diagnosis (CAD) systems paper, we propose a novel model, which uses a novel attention capable of precise skin cancer classification. However, mechanism to pinpoint the differences in features across due to the inter-class similarity and intra-class dissimilarity the spatial dimensions and symmetry of the lesion, thereby focusing among different types of skin cancer, classifying skin cancer on the dissimilarities of various classes based on symmetry, using medical image processing is a challenging issue.


A Cognitive Study on Semantic Similarity Analysis of Large Corpora: A Transformer-based Approach

arXiv.org Artificial Intelligence

Semantic similarity analysis and modeling is a fundamentally acclaimed task in many pioneering applications of natural language processing today. Owing to the sensation of sequential pattern recognition, many neural networks like RNNs and LSTMs have achieved satisfactory results in semantic similarity modeling. However, these solutions are considered inefficient due to their inability to process information in a non-sequential manner, thus leading to the improper extraction of context. Transformers function as the state-of-the-art architecture due to their advantages like non-sequential data processing and self-attention. In this paper, we perform semantic similarity analysis and modeling on the U.S Patent Phrase to Phrase Matching Dataset using both traditional and transformer-based techniques. We experiment upon four different variants of the Decoding Enhanced BERT - DeBERTa and enhance its performance by performing K-Fold Cross-Validation. The experimental results demonstrate our methodology's enhanced performance compared to traditional techniques, with an average Pearson correlation score of 0.79.


AIIMS Raipur organizes seminar on Artificial Intelligence in healthcare

#artificialintelligence

Raipur: The All India Institute of Medical Sciences Raipur in Chhattisgarh organized a ''Continuing Medical Education'' (CME) seminar on Artificial Intelligence in healthcare, with 625 delegates taking part, officials said on Sunday. The aim was to find out how AI-based technology could be accommodated in diagnostics and patient management while taking care of accountability, transparency and privacy issues. AIIMS Raipur president Professor George A D''Souza said AI was being used in diagnostics, surgery, patient management, drug discovery and administration as well as fields like dermatology, ophthalmology and radiology. "We have to address several issues and safeguard the interests of different stakeholders while using AI in healthcare. These include privacy, consent of the patient, interpretation of data, accountability and transparency," he said.


Student sentiment Analysis Using Classification With Feature Extraction Techniques

arXiv.org Artificial Intelligence

Technical growths have empowered, numerous revolutions in the educational system by acquainting with technology into the classroom and by elevating the learning experience. Nowadays Web-based learning is getting much popularity. This paper describes the web-based learning and their effectiveness towards students. One of the prime factors in education or learning system is feedback; it is beneficial to learning if it must be used effectively. In this paper, we worked on how machine learning techniques like Logistic Regression (LR), Support Vector Machine (SVM), Naive Bayes (NB), Decision Tree (DT) can be applied over Web-based learning, emphasis given on sentiment present in the feedback students. We also work on two types of Feature Extraction Technique (FETs) namely Count Vector (CVr) or Bag of Words) (BoW) and Term Frequency and Inverse Document Frequency (TF-IDF) Vector. In the research study, it is our goal for our proposed LR, SVM, NB, and DT models to classify the presence of Student Feedback Dataset (SFB) with improved accuracy with cleaned dataset and feature extraction techniques. The SFB is one of the significant concerns among the student sentimental analysis.


Deep Learning to Address Candidate Generation and Cold Start Challenges in Recommender Systems: A Research Survey

arXiv.org Machine Learning

Among the machine learning applications to business, recommender systems would take one of the top places when it comes to success and adoption. They help the user in accelerating the process of search while helping businesses maximize sales. Post phenomenal success in computer vision and speech recognition, deep learning methods are beginning to get applied to recommender systems. Current survey papers on deep learning in recommender systems provide a historical overview and taxonomy of recommender systems based on type. Our paper addresses the gaps of providing a taxonomy of deep learning approaches to address recommender systems problems in the areas of cold start and candidate generation in recommender systems. We outline different challenges in recommender systems into those related to the recommendations themselves (include relevance, speed, accuracy and scalability), those related to the nature of the data (cold start problem, imbalance and sparsity) and candidate generation. We then provide a taxonomy of deep learning techniques to address these challenges. Deep learning techniques are mapped to the different challenges in recommender systems providing an overview of how deep learning techniques can be used to address them. We contribute a taxonomy of deep learning techniques to address the cold start and candidate generation problems in recommender systems. Cold Start is addressed through additional features (for audio, images, text) and by learning hidden user and item representations. Candidate generation has been addressed by separate networks, RNNs, autoencoders and hybrid methods. We also summarize the advantages and limitations of these techniques while outlining areas for future research.