upstream oil & gas

From ROI To RAI (Revenue From Artificial Intelligence)


As disruptive technologies such as artificial intelligence (AI) fundamentally alter the way we live and do business, C-suite attitudes toward IT spending and utilization are shifting. Once considered a cost of doing business, technology is now viewed as a business driver that's critical to an organization's ability to perform core functions, even in industries far removed from Silicon Valley. However, many executives still struggle to determine the ROI to justify investments in AI and machine learning, even as AI becomes increasingly crucial to 21st century business decision-making. Except for the IT industry itself, C-suites have historically viewed IT expenses as a cost of entry to do business in the digital age, not revenue-generating investments. Then came new technologies such as mobile, cloud computing and the internet of things (IoT).

Learning to Explore and Exploit in POMDPs

Neural Information Processing Systems

A fundamental objective in reinforcement learning is the maintenance of a proper balance between exploration and exploitation. This problem becomes more challenging when the agent can only partially observe the states of its environment. In this paper we propose a dual-policy method for jointly learning the agent behavior and the balance between exploration exploitation, in partially observable environments. The method subsumes traditional exploration, in which the agent takes actions to gather information about the environment, and active learning, in which the agent queries an oracle for optimal actions (with an associated cost for employing the oracle). The form of the employed exploration is dictated by the specific problem.

Diversity-Driven Exploration Strategy for Deep Reinforcement Learning

Neural Information Processing Systems

Efficient exploration remains a challenging research problem in reinforcement learning, especially when an environment contains large state spaces, deceptive local optima, or sparse rewards. To tackle this problem, we present a diversity-driven approach for exploration, which can be easily combined with both off- and on-policy reinforcement learning algorithms. We show that by simply adding a distance measure to the loss function, the proposed methodology significantly enhances an agent's exploratory behaviors, and thus preventing the policy from being trapped in local optima. We further propose an adaptive scaling method for stabilizing the learning process. We demonstrate the effectiveness of our method in huge 2D gridworlds and a variety of benchmark environments, including Atari 2600 and MuJoCo.

Differentiable Convex Optimization Layers

Neural Information Processing Systems

Recent work has shown how to embed differentiable optimization problems (that is, problems whose solutions can be backpropagated through) as layers within deep learning architectures. This method provides a useful inductive bias for certain problems, but existing software for differentiable optimization layers is rigid and difficult to apply to new settings. In this paper, we propose an approach to differentiating through disciplined convex programs, a subclass of convex optimization problems used by domain-specific languages (DSLs) for convex optimization. We introduce disciplined parametrized programming, a subset of disciplined convex programming, and we show that every disciplined parametrized program can be represented as the composition of an affine map from parameters to problem data, a solver, and an affine map from the solver's solution to a solution of the original problem (a new form we refer to as affine-solver-affine form). We then demonstrate how to efficiently differentiate through each of these components, allowing for end-to-end analytical differentiation through the entire convex program.

Deep Dynamical Modeling and Control of Unsteady Fluid Flows

Neural Information Processing Systems

The design of flow control systems remains a challenge due to the nonlinear nature of the equations that govern fluid flow. However, recent advances in computational fluid dynamics (CFD) have enabled the simulation of complex fluid flows with high accuracy, opening the possibility of using learning-based approaches to facilitate controller design. We present a method for learning the forced and unforced dynamics of airflow over a cylinder directly from CFD data. The proposed approach, grounded in Koopman theory, is shown to produce stable dynamical models that can predict the time evolution of the cylinder system over extended time horizons. Finally, by performing model predictive control with the learned dynamical models, we are able to find a straightforward, interpretable control law for suppressing vortex shedding in the wake of the cylinder.

Meta-Reinforcement Learning of Structured Exploration Strategies

Neural Information Processing Systems

Exploration is a fundamental challenge in reinforcement learning (RL). Many current exploration methods for deep RL use task-agnostic objectives, such as information gain or bonuses based on state visitation. However, many practical applications of RL involve learning more than a single task, and prior tasks can be used to inform how exploration should be performed in new tasks. In this work, we study how prior tasks can inform an agent about how to explore effectively in new situations. We introduce a novel gradient-based fast adaptation algorithm – model agnostic exploration with structured noise (MAESN) – to learn exploration strategies from prior experience.

Multivariate Triangular Quantile Maps for Novelty Detection

Neural Information Processing Systems

Novelty detection, a fundamental task in machine learning, has drawn a lot of recent attention due to its wide-ranging applications and the rise of neural approaches. In this work, we present a general framework for neural novelty detection that centers around a multivariate extension of the univariate quantile function. Our framework unifies and extends many classical and recent novelty detection algorithms, and opens the way to exploit recent advances in flow-based neural density estimation. We adapt the multiple gradient descent algorithm to obtain the first efficient end-to-end implementation of our framework that is free of tuning hyperparameters. Extensive experiments over a number of real datasets confirm the efficacy of our proposed method against state-of-the-art alternatives.

Data center cooling using model-predictive control

Neural Information Processing Systems

Despite impressive recent advances in reinforcement learning (RL), its deployment in real-world physical systems is often complicated by unexpected events, limited data, and the potential for expensive failures. In this paper, we describe an application of RL "in the wild" to the task of regulating temperatures and airflow inside a large-scale data center (DC). Adopting a data-driven, model-based approach, we demonstrate that an RL agent with little prior knowledge is able to effectively and safely regulate conditions on a server floor after just a few hours of exploration, while improving operational efficiency relative to existing PID controllers. Papers published at the Neural Information Processing Systems Conference.

Near Optimal Exploration-Exploitation in Non-Communicating Markov Decision Processes

Neural Information Processing Systems

While designing the state space of an MDP, it is common to include states that are transient or not reachable by any policy (e.g., in mountain car, the product space of speed and position contains configurations that are not physically reachable). In this paper, we introduce TUCRL, the first algorithm able to perform efficient exploration-exploitation in any finite Markov Decision Process (MDP) without requiring any form of prior knowledge. In particular, for any MDP with $S c$ communicating states, $A$ actions and $\Gamma c \leq S c$ possible communicating next states, we derive a $O(D c \sqrt{\Gamma c S c A T}) regret bound, where $D c$ is the diameter (i.e., the length of the longest shortest path between any two states) of the communicating part of the MDP. This is in contrast with optimistic algorithms (e.g., UCRL, Optimistic PSRL) that suffer linear regret in weakly-communicating MDPs, as well as posterior sampling or regularised algorithms (e.g., REGAL), which require prior knowledge on the bias span of the optimal policy to bias the exploration to achieve sub-linear regret. We also prove that in weakly-communicating MDPs, no algorithm can ever achieve a logarithmic growth of the regret without first suffering a linear regret for a number of steps that is exponential in the parameters of the MDP.

Robust Portfolio Optimization

Neural Information Processing Systems

We propose a robust portfolio optimization approach based on quantile statistics. The proposed method is robust to extreme events in asset returns, and accommodates large portfolios under limited historical data. Specifically, we show that the risk of the estimated portfolio converges to the oracle optimal risk with parametric rate under weakly dependent asset returns. The theory does not rely on higher order moment assumptions, thus allowing for heavy-tailed asset returns. Moreover, the rate of convergence quantifies that the size of the portfolio under management is allowed to scale exponentially with the sample size of the historical data.