Goto

Collaborating Authors

time series


Response to Comment on "Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances"

Science

Desquilbet et al. take issue with our data inclusion criteria and make several other dubious claims regarding data processing, analysis, and interpretation. Most of their concerns stem from disagreement on data inclusion criteria and analysis, misunderstanding of our goals, and unrealistic expectations. We maintain that our synthesis provides a state-of-the-art analysis of patterns of trends in insect abundances. In their Comment, Desquilbet et al. (1) argue for more rigorous methodology applied to broad-scale syntheses of biodiversity trends. They claim that a large proportion of the datasets used in our meta-analysis (2) are flawed.


MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

arXiv.org Machine Learning

Until recently, the most accurate methods for time series classification were limited by high computational complexity. ROCKET achieves state-of-the-art accuracy with a fraction of the computational expense of most existing methods by transforming input time series using random convolutional kernels, and using the transformed features to train a linear classifier. We reformulate ROCKET into a new method, MINIROCKET, making it up to 75 times faster on larger datasets, and making it almost deterministic (and optionally, with additional computational expense, fully deterministic), while maintaining essentially the same accuracy. Using this method, it is possible to train and test a classifier on all of 109 datasets from the UCR archive to state-of-the-art accuracy in less than 10 minutes. MINIROCKET is significantly faster than any other method of comparable accuracy (including ROCKET), and significantly more accurate than any other method of even roughly-similar computational expense. As such, we suggest that MINIROCKET should now be considered and used as the default variant of ROCKET.


Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow Forecasting

arXiv.org Artificial Intelligence

Spatial-temporal data forecasting of traffic flow is a challenging task because of complicated spatial dependencies and dynamical trends of temporal pattern between different roads. Existing frameworks typically utilize given spatial adjacency graph and sophisticated mechanisms for modeling spatial and temporal correlations. However, limited representations of given spatial graph structure with incomplete adjacent connections may restrict effective spatial-temporal dependencies learning of those models. To overcome those limitations, our paper proposes Spatial-Temporal Fusion Graph Neural Networks (STFGNN) for traffic flow forecasting. SFTGNN could effectively learn hidden spatial-temporal dependencies by a novel fusion operation of various spatial and temporal graphs, which is generated by a data-driven method. Meanwhile, by integrating this fusion graph module and a novel gated convolution module into a unified layer, SFTGNN could handle long sequences. Experimental results on several public traffic datasets demonstrate that our method achieves state-of-the-art performance consistently than other baselines.


Detection of Anomalies in a Time Series Data using InfluxDB and Python

arXiv.org Machine Learning

Analysis of water and environmental data is an important aspect of many intelligent water and environmental system applications where inference from such analysis plays a significant role in decision making. Quite often these data that are collected through sensible sensors can be anomalous due to different reasons such as systems breakdown, malfunctioning of sensor detectors, and more. Regardless of their root causes, such data severely affect the results of the subsequent analysis. This paper demonstrates data cleaning and preparation for time-series data and further proposes cost-sensitive machine learning algorithms as a solution to detect anomalous data points in time-series data. The following models: Logistic Regression, Random Forest, Support Vector Machines have been modified to support the cost-sensitive learning which penalizes misclassified samples thereby minimizing the total misclassification cost. Our results showed that Random Forest outperformed the rest of the models at predicting the positive class (i.e anomalies). Applying predictive model improvement techniques like data oversampling seems to provide little or no improvement to the Random Forest model. Interestingly, with recursive feature elimination, we achieved a better model performance thereby reducing the dimensions in the data. Finally, with Influxdb and Kapacitor the data was ingested and streamed to generate new data points to further evaluate the model performance on unseen data, this will allow for early recognition of undesirable changes in the drinking water quality and will enable the water supply companies to rectify on a timely basis whatever undesirable changes abound.


Concept Drift and Covariate Shift Detection Ensemble with Lagged Labels

arXiv.org Artificial Intelligence

In model serving, having one fixed model during the entire often life-long inference process is usually detrimental to model performance, as data distribution evolves over time, resulting in lack of reliability of the model trained on historical data. It is important to detect changes and retrain the model in time. The existing methods generally have three weaknesses: 1) using only classification error rate as signal, 2) assuming ground truth labels are immediately available after features from samples are received and 3) unable to decide what data to use to retrain the model when change occurs. We address the first problem by utilizing six different signals to capture a wide range of characteristics of data, and we address the second problem by allowing lag of labels, where labels of corresponding features are received after a lag in time. For the third problem, our proposed method automatically decides what data to use to retrain based on the signals. Extensive experiments on structured and unstructured data for different type of data changes establish that our method consistently outperforms the state-of-the-art methods by a large margin.


Applications of multivariate quasi-random sampling with neural networks

arXiv.org Machine Learning

Generative moment matching networks (GMMNs) are suggested for modeling the cross-sectional dependence between stochastic processes. The stochastic processes considered are geometric Brownian motions and ARMA-GARCH models. Geometric Brownian motions lead to an application of pricing American basket call options under dependence and ARMA-GARCH models lead to an application of simulating predictive distributions. In both types of applications the benefit of using GMMNs in comparison to parametric dependence models is highlighted and the fact that GMMNs can produce dependent quasi-random samples with no additional effort is exploited to obtain variance reduction.


At the Intersection of Deep Sequential Model Framework and State-space Model Framework: Study on Option Pricing

arXiv.org Machine Learning

Inference and forecast problems of the nonlinear dynamical system have arisen in a variety of contexts. Reservoir computing and deep sequential models, on the one hand, have demonstrated efficient, robust, and superior performance in modeling simple and chaotic dynamical systems. However, their innate deterministic feature has partially detracted their robustness to noisy system, and their inability to offer uncertainty measurement has also been an insufficiency of the framework. On the other hand, the traditional state-space model framework is robust to noise. It also carries measured uncertainty, forming a just-right complement to the reservoir computing and deep sequential model framework. We propose the unscented reservoir smoother, a model that unifies both deep sequential and state-space models to achieve both frameworks' superiorities. Evaluated in the option pricing setting on top of noisy datasets, URS strikes highly competitive forecasting accuracy, especially those of longer-term, and uncertainty measurement. Further extensions and implications on URS are also discussed to generalize a full integration of both frameworks.


Deep Portfolio Optimization via Distributional Prediction of Residual Factors

arXiv.org Machine Learning

Recent developments in deep learning techniques have motivated intensive research in machine learning-aided stock trading strategies. However, since the financial market has a highly non-stationary nature hindering the application of typical data-hungry machine learning methods, leveraging financial inductive biases is important to ensure better sample efficiency and robustness. In this study, we propose a novel method of constructing a portfolio based on predicting the distribution of a financial quantity called residual factors, which is known to be generally useful for hedging the risk exposure to common market factors. The key technical ingredients are twofold. First, we introduce a computationally efficient extraction method for the residual information, which can be easily combined with various prediction algorithms. Second, we propose a novel neural network architecture that allows us to incorporate widely acknowledged financial inductive biases such as amplitude invariance and time-scale invariance. We demonstrate the efficacy of our method on U.S. and Japanese stock market data. Through ablation experiments, we also verify that each individual technique contributes to improving the performance of trading strategies. We anticipate our techniques may have wide applications in various financial problems.


Parameter Estimation with Dense and Convolutional Neural Networks Applied to the FitzHugh-Nagumo ODE

arXiv.org Machine Learning

Machine learning algorithms have been successfully used to approximate nonlinear maps under weak assumptions on the structure and properties of the maps. We present deep neural networks using dense and convolutional layers to solve an inverse problem, where we seek to estimate parameters in a FitzHugh-Nagumo model, which consists of a nonlinear system of ordinary differential equations (ODEs). We employ the neural networks to approximate reconstruction maps for model parameter estimation from observational data, where the data comes from the solution of the ODE and takes the form of a time series representing dynamically spiking membrane potential of a (biological) neuron. We target this dynamical model because of the computational challenges it poses in an inference setting, namely, having a highly nonlinear and nonconvex data misfit term and permitting only weakly informative priors on parameters. These challenges cause traditional optimization to fail and alternative algorithms to exhibit large computational costs. We quantify the predictability of model parameters obtained from the neural networks with statistical metrics and investigate the effects of network architectures and presence of noise in observational data. Our results demonstrate that deep neural networks are capable of very accurately estimating parameters in dynamical models from observational data.


An Empirical Study of Explainable AI Techniques on Deep Learning Models For Time Series Tasks

arXiv.org Artificial Intelligence

Decision explanations of machine learning black-box models are often generated by applying Explainable AI (XAI) techniques. However, many proposed XAI methods produce unverified outputs. Evaluation and verification are usually achieved with a visual interpretation by humans on individual images or text. In this preregistration, we propose an empirical study and benchmark framework to apply attribution methods for neural networks developed for images and text data on time series. We present a methodology to automatically evaluate and rank attribution techniques on time series using perturbation methods to identify reliable approaches.