Collaborating Authors

fuzzy logic

Artificial Intelligence Review


On the evaluation and combination of state-of-the-art features in Twitter sentiment analysis Authors Content type: OriginalPaper Published: 27 August 2020 Nature inspired optimization algorithms or simply variations of metaheuristics? Nature inspired optimization algorithms or simply variations of metaheuristics? Nature inspired optimization algorithms or simply variations of metaheuristics? Electric Charged Particles Optimization and its application to the optimal design of a circular antenna array Authors H. R. E. H. Bouchekara Content type: OriginalPaper Published: 20 August 2020 CHIRPS: Explaining random forest classification Authors Mohamed Medhat Gaber R. Muhammad Atif Azad Content type: OriginalPaper Published: 04 June 2020 Image classifiers and image deep learning classifiers evolved in detection of Oryza sativa diseases: survey Authors N. V. Raja Reddy Goluguri Content type: EditorialNotes Published: 28 May 2020 Novel classes of coverings based multigranulation fuzzy rough sets and corresponding applications to multiple attribute group decision-making Authors (first, second and last of 4) José Carlos R. Alcantud Content type: OriginalPaper Published: 19 May 2020

End-to-End AI-Based Point-of-Care Diagnosis System for Classifying Respiratory Illnesses and Early Detection of COVID-19 Artificial Intelligence

Respiratory symptoms can be a caused by different underlying conditions, and are often caused by viral infections, such as Influenza-like illnesses or other emerging viruses like the Coronavirus. These respiratory viruses, often, have common symptoms, including coughing, high temperature, congested nose, and difficulty breathing. However, early diagnosis of the type of the virus, can be crucial, especially in cases such as the recent COVID-19 pandemic. One of the factors that contributed to the spread of the pandemic, was the late diagnosis or confusing it with regular flu-like symptoms. Science has proved that one of the possible differentiators of the underlying causes of these different respiratory diseases is coughing, which comes in different types and forms. Therefore, a reliable lab-free tool for early and more accurate diagnosis that can differentiate between different respiratory diseases is very much needed. This paper proposes an end-to-end portable system that can record data from patients with symptom, including coughs (voluntary or involuntary) and translate them into health data for diagnosis, and with the aid of machine learning, classify them into different respiratory illnesses, including COVID-19. With the ongoing efforts to stop the spread of the COVID-19 disease everywhere today, and against similar diseases in the future, our proposed low cost and user-friendly solution can play an important part in the early diagnosis.

On Reward-Free Reinforcement Learning with Linear Function Approximation Artificial Intelligence

Reward-free reinforcement learning (RL) is a framework which is suitable for both the batch RL setting and the setting where there are many reward functions of interest. During the exploration phase, an agent collects samples without using a pre-specified reward function. After the exploration phase, a reward function is given, and the agent uses samples collected during the exploration phase to compute a near-optimal policy. Jin et al. [2020] showed that in the tabular setting, the agent only needs to collect polynomial number of samples (in terms of the number states, the number of actions, and the planning horizon) for reward-free RL. However, in practice, the number of states and actions can be large, and thus function approximation schemes are required for generalization. In this work, we give both positive and negative results for reward-free RL with linear function approximation. We give an algorithm for reward-free RL in the linear Markov decision process setting where both the transition and the reward admit linear representations. The sample complexity of our algorithm is polynomial in the feature dimension and the planning horizon, and is completely independent of the number of states and actions. We further give an exponential lower bound for reward-free RL in the setting where only the optimal $Q$-function admits a linear representation. Our results imply several interesting exponential separations on the sample complexity of reward-free RL.

Neural Computing and Applications


Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems. Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews, and Announcements. The Original Articles will be high-quality contributions, representing new and significant research, developments or applications of practical use and value. They will be reviewed by at least two referees. For all queries relating to papers after submission, please contact the Journal Editorial Office via "contact us" at Editorial Manager.

Optimization of Fuzzy Controller of a Wind Power Plant Based on the Swarm Intelligence Artificial Intelligence

The article considers the problem of the optimal control of a wind power plant based on fuzzy control and automation of generating the fuzzy rule base. Fuzzy rules by experts do not always provide a maximum power output of the wind plant and fuzzy rule bases require an adjustment in the case of changing the parameters of the wind power plant or the environment. This research proposes the method for optimizing the fuzzy rules base compiled by various experts. The method is based on balancing weights of fuzzy rules into the base by the Particle Swarm Optimization algorithm. The experiment has shown that the proposed method allows forming the fuzzy rule base as an exemplary optimal base from a non-optimized set of fuzzy rules. The optimal fuzzy rule base has been taken under consideration for the concrete control loop of wind power plant and the concrete fuzzy model of the wind.

Explainable Artificial Intelligence: a Systematic Review Artificial Intelligence

This has led to the development of a plethora of domain-dependent and context-specific methods for dealing with the interpretation of machine learning (ML) models and the formation of explanations for humans. Unfortunately, this trend is far from being over, with an abundance of knowledge in the field which is scattered and needs organisation. The goal of this article is to systematically review research works in the field of XAI and to try to define some boundaries in the field. From several hundreds of research articles focused on the concept of explainability, about 350 have been considered for review by using the following search methodology. In a first phase, Google Scholar was queried to find papers related to "explainable artificial intelligence", "explainable machine learning" and "interpretable machine learning". Subsequently, the bibliographic section of these articles was thoroughly examined to retrieve further relevant scientific studies. The first noticeable thing, as shown in figure 2 (a), is the distribution of the publication dates of selected research articles: sporadic in the 70s and 80s, receiving preliminary attention in the 90s, showing raising interest in 2000 and becoming a recognised body of knowledge after 2010. The first research concerned the development of an explanation-based system and its integration in a computer program designed to help doctors make diagnoses [3]. Some of the more recent papers focus on work devoted to the clustering of methods for explainability, motivating the need for organising the XAI literature [4, 5, 6].

Analyzing Differentiable Fuzzy Implications Artificial Intelligence

Combining symbolic and neural approaches has gained considerable attention in the AI community, as it is often argued that the strengths and weaknesses of these approaches are complementary. One such trend in the literature are weakly supervised learning techniques that employ operators from fuzzy logics. In particular, they use prior background knowledge described in such logics to help the training of a neural network from unlabeled and noisy data. By interpreting logical symbols using neural networks (or grounding them), this background knowledge can be added to regular loss functions, hence making reasoning a part of learning. In this paper, we investigate how implications from the fuzzy logic literature behave in a differentiable setting. In such a setting, we analyze the differences between the formal properties of these fuzzy implications. It turns out that various fuzzy implications, including some of the most well-known, are highly unsuitable for use in a differentiable learning setting. A further finding shows a strong imbalance between gradients driven by the antecedent and the consequent of the implication. Furthermore, we introduce a new family of fuzzy implications (called sigmoidal implications) to tackle this phenomenon. Finally, we empirically show that it is possible to use Differentiable Fuzzy Logics for semi-supervised learning, and show that sigmoidal implications outperform other choices of fuzzy implications.

Artificial Intelligence: A Complete Introduction


As you already know, AI is one of the leading technologies in the world today, and people are talking about it much more than ever. We now can find AI applications every where: from finances, marketing, healthcare, to autonomous vehicles, security, or robotics. However, the domain of AI still lacks of qualified employees while the number of investments in AI is increasing rapidly. Thus, open a great opporturnity for people having a background in this domain. After several years of researching and working in AI, now I'd like to share my knowledge and my experiences to people who want to learn about AI, because I really hope that my small contribution can help many ones find a fast and easy way in learning AI.

An Exploratory Study of Hierarchical Fuzzy Systems Approach in Recommendation System Artificial Intelligence

Recommendation system or also known as a recommender system is a tool to help the user in providing a suggestion of a specific dilemma. Thus, recently, the interest in developing a recommendation system in many fields has increased. Fuzzy Logic system (FLSs) is one of the approaches that can be used to model the recommendation systems as it can deal with uncertainty and imprecise information. However, one of the fundamental issues in FLS is the problem of the curse of dimensionality. That is, the number of rules in FLSs is increasing exponentially with the number of input variables. One effective way to overcome this problem is by using Hierarchical Fuzzy System (HFSs). This paper aims to explore the use of HFSs for Recommendation system. Specifically, we are interested in exploring and comparing the HFS and FLS for the Career path recommendation system (CPRS) based on four key criteria, namely topology, the number of rules, the rules structures and interpretability. The findings suggested that the HFS has advantages over FLS towards improving the interpretability models, in the context of a recommendation system example. This study contributes to providing an insight into the development of interpretable HFSs in the Recommendation systems.

Forecasting Solar Activity with Two Computational Intelligence Models (A Comparative Study) Artificial Intelligence

Solar activity It is vital to accurately predict solar activity, in order to decrease the plausible damage of electronic equipment in the event of a large high-intensity solar eruption. Recently, we have proposed BELFIS (Brain Emotional Learning-based Fuzzy Inference System) as a tool for the forecasting of chaotic systems. The structure of BELFIS is designed based on the neural structure of fear conditioning. The function of BELFIS is implemented by assigning adaptive networks to the components of the BELFIS structure. This paper especially focuses on performance evaluation of BELFIS as a predictor by forecasting solar cycles 16 to 24. The performance of BELFIS is compared with other computational models used for this purpose, and in particular with adaptive neuro-fuzzy inference system (ANFIS).