Collaborating Authors

discriminator network

Evaluation of Deep Convolutional Generative Adversarial Networks for data augmentation of chest X-ray images Artificial Intelligence

Medical image datasets are usually imbalanced, due to the high costs of obtaining the data and time-consuming annotations. Training deep neural network models on such datasets to accurately classify the medical condition does not yield desired results and often over-fits the data on majority class samples. In order to address this issue, data augmentation is often performed on training data by position augmentation techniques such as scaling, cropping, flipping, padding, rotation, translation, affine transformation, and color augmentation techniques such as brightness, contrast, saturation, and hue to increase the dataset sizes. These augmentation techniques are not guaranteed to be advantageous in domains with limited data, especially medical image data, and could lead to further overfitting. In this work, we performed data augmentation on the Chest X-rays dataset through generative modeling (deep convolutional generative adversarial network) which creates artificial instances retaining similar characteristics to the original data and evaluation of the model resulted in Fr\'echet Distance of Inception (FID) score of 1.289.

A Semi-Supervised Generative Adversarial Network for Prediction of Genetic Disease Outcomes Machine Learning

For most diseases, building large databases of labeled genetic data is an expensive and time-demanding task. To address this, we introduce genetic Generative Adversarial Networks (gGAN), a semi-supervised approach based on an innovative GAN architecture to create large synthetic genetic data sets starting with a small amount of labeled data and a large amount of unlabeled data. Our goal is to determine the propensity of a new individual to develop the severe form of the illness from their genetic profile alone. The proposed model achieved satisfactory results using real genetic data from different datasets and populations, in which the test populations may not have the same genetic profiles. The proposed model is self-aware and capable of determining whether a new genetic profile has enough compatibility with the data on which the network was trained and is thus suitable for prediction. The code and datasets used can be found at

Image fusion using symmetric skip autoencodervia an Adversarial Regulariser Machine Learning

It is a challenging task to extract the best of both worlds by combining the spatial characteristics of a visible image and the spectral content of an infrared image. In this work, we propose a spatially constrained adversarial autoencoder that extracts deep features from the infrared and visible images to obtain a more exhaustive and global representation. In this paper, we propose a residual autoencoder architecture, regularised by a residual adversarial network, to generate a more realistic fused image. The residual module serves as primary building for the encoder, decoder and adversarial network, as an add on the symmetric skip connections perform the functionality of embedding the spatial characteristics directly from the initial layers of encoder structure to the decoder part of the network. The spectral information in the infrared image is incorporated by adding the feature maps over several layers in the encoder part of the fusion structure, which makes inference on both the visual and infrared images separately. In order to efficiently optimize the parameters of the network, we propose an adversarial regulariser network which would perform supervised learning on the fused image and the original visual image.

GAN Pix2Pix Generative Model


We hear a lot about language translation with deep learning where the neural network learns a mapping from one language to another. In fact, Google translate uses one to translate to more than 100 languages. But, can we do a similar task with images? If it's possible to capture the intricacies of languages, it'll surely be possible to translate an image to another. Indeed, this shows the power of deep learning.

Pix2pix GAN Generative Deep Learning Model Learn more at Hackerstreak


Pix2Pix GAN has a generator and a discriminator just like a normal GAN would have. But, it is more supervised than GAN (as it has target images as output labels). For our black and white image colorization task, the input B&W is processed by the generator model and it produces the color version of the input as output. In Pix2Pix, the generator is a convolutional network with U-net architecture. It takes in the input image (B&W, single channel), passes it through a series of convolution and up-sampling layers.

Implicit Discriminator in Variational Autoencoder Machine Learning

Recently generative models have focused on combining the advantages of variational autoencoders (VAE) and generative adversarial networks (GAN) for good reconstruction and generative abilities. In this work we introduce a novel hybrid architecture, Implicit Discriminator in V aria-tional Autoencoder (IDVAE), that combines a VAE and a GAN, which does not need an explicit discriminator network. The fundamental premise of the IDVAE architecture is that the encoder of a VAE and the discriminator of a GAN utilize common features and therefore can be trained as a shared network, while the decoder of the VAE and the generator of the GAN can be combined to learn a single network. This results in a simple two-tier architecture that has the properties of both a VAE and a GAN. The qualitative and quantitative experiments on real-world benchmark datasets demonstrates that IDVAE perform better than the state of the art hybrid approaches. W e experimentally validate that IDVAE can be easily extended to work in a conditional setting and demonstrate its performance on complex datasets.

Adversarial Fault Tolerant Training for Deep Neural Networks Machine Learning

Deep Learning Accelerators are prone to faults which manifest in the form of errors in Neural Networks. Fault Tolerance in Neural Networks is crucial in real-time safety critical applications requiring computation for long durations. Neural Networks with high regularisation exhibit superior fault tolerance, however, at the cost of classification accuracy. In the view of difference in functionality, a Neural Network is modelled as two separate networks, i.e, the Feature Extractor with unsupervised learning objective and the Classifier with a supervised learning objective. Traditional approaches of training the entire network using a single supervised learning objective is insufficient to achieve the objectives of the individual components optimally. In this work, a novel multi-criteria objective function, combining unsupervised training of the Feature Extractor followed by supervised tuning with Classifier Network is proposed. The unsupervised training solves two games simultaneously in the presence of adversary neural networks with conflicting objectives to the Feature Extractor. The first game minimises the loss in reconstructing the input image for indistinguishability given the features from the Extractor, in the presence of a generative decoder. The second game solves a minimax constraint optimisation for distributional smoothening of feature space to match a prior distribution, in the presence of a Discriminator network. The resultant strongly regularised Feature Extractor is combined with the Classifier Network for supervised fine-tuning. The proposed Adversarial Fault Tolerant Neural Network Training is scalable to large networks and is independent of the architecture. The evaluation on benchmarking datasets: FashionMNIST and CIFAR10, indicates that the resultant networks have high accuracy with superior tolerance to stuck at "0" faults compared to widely used regularisers.

Augmenting C. elegans Microscopic Dataset for Accelerated Pattern Recognition Artificial Intelligence

The detection of cell shape changes in 3D time-lapse images of complex tissues is an important task. However, it is a challenging and tedious task to establish a comprehensive dataset to improve the performance of deep learning models. In the paper, we present a deep learning approach to augment 3D live images of the Caenorhabditis elegans embryo, so that we can further speed up the specific structural pattern recognition. We use an unsupervised training over unlabeled images to generate supplementary datasets for further pattern recognition. Technically, we used Alex-style neural networks in a generative adversarial network framework to generate new datasets that have common features of the C. elegans membrane structure. We also made the dataset available for a broad scientific community.

Generative Imputation and Stochastic Prediction Machine Learning

In many machine learning applications, we are faced with incomplete datasets. In the literature, missing data imputation techniques have been mostly concerned with filling missing values. However, the existence of missing values is synonymous with uncertainties not only over the distribution of missing values but also over target class assignments that require careful consideration. The objectives of this paper are twofold. First, we proposed a method for generating imputations from the conditional distribution of missing values given observed values. Second, we use the generated samples to estimate the distribution of target assignments given incomplete data. In order to generate imputations, we train a simple and effective generator network to generate imputations that a discriminator network is tasked to distinguish. Following this, a predictor network is trained using imputed samples from the generator network to capture the classification uncertainties and make predictions accordingly. The proposed method is evaluated on CIFAR-10 image dataset as well as two real-world tabular classification datasets, under various missingness rates and structures. Our experimental results show the effectiveness of the proposed method in generating imputations, as well as providing estimates for the class uncertainties in a classification task when faced with missing values.

Conditional WGANs with Adaptive Gradient Balancing for Sparse MRI Reconstruction Machine Learning

Recent sparse MRI reconstruction models have used Deep Neural Networks (DNNs) to reconstruct relatively high-quality images from highly undersampled k-space data, enabling much faster MRI scanning. However, these techniques sometimes struggle to reconstruct sharp images that preserve fine detail while maintaining a natural appearance. In this work, we enhance the image quality by using a Conditional Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique that stabilizes the training and minimizes the degree of artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.