association discovery


BigML Fall 2015 Release

#artificialintelligence

BigML is the first Machine Learning service offering Association Discovery on the cloud! Please watch this video to learn how to use Association Discovery and other new features BigML has just released, such as Partial Dependence Plots, Logistic Regression, Correlations, Statistical Tests, Flatline Editor and more!


Association Discovery and Diagnosis of Alzheimer s Disease with Bayesian Multiview Learning

Journal of Artificial Intelligence Research

The analysis and diagnosis of Alzheimers disease (AD) can be based on genetic variations, e.g., single nucleotide polymorphisms (SNPs) and phenotypic traits, e.g., Magnetic Resonance Imaging (MRI) features. We consider two important and related tasks: i) to select genetic and phenotypical markers for AD diagnosis and ii) to identify associations between genetic and phenotypical data. While previous studies treat these two tasks separately, they are tightly coupled because underlying associations between genetic variations and phenotypical features contain the biological basis for a disease. Here we present a new sparse Bayesian approach for joint association study and disease diagnosis. In this approach, common latent features are extracted from different data sources based on sparse projection matrices and used to predict multiple disease severity levels; in return, the disease status can guide the discovery of relationships between data sources. The sparse projection matrices not only reveal interactions between data sources but also select groups of biomarkers related to the disease. Moreover, to take advantage of the linkage disequilibrium (LD) measuring the non-random association of alleles, we incorporate a graph Laplacian type of prior in the model. To learn the model from data, we develop an efficient variational inference algorithm. Analysis on an imaging genetics dataset for the study of Alzheimers Disease (AD) indicates that our model identifies biologically meaningful associations between genetic variations and MRI features, and achieves significantly higher accuracy for predicting ordinal AD stages than the competing methods.


Association Discovery and Diagnosis of Alzheimer’s Disease with Bayesian Multiview Learning

Journal of Artificial Intelligence Research

The analysis and diagnosis of Alzheimer’s disease (AD) can be based on genetic variations, e.g., single nucleotide polymorphisms (SNPs) and phenotypic traits, e.g., Magnetic Resonance Imaging (MRI) features. We consider two important and related tasks: i) to select genetic and phenotypical markers for AD diagnosis and ii) to identify associations between genetic and phenotypical data. While previous studies treat these two tasks separately, they are tightly coupled because underlying associations between genetic variations and phenotypical features contain the biological basis for a disease. Here we present a new sparse Bayesian approach for joint association study and disease diagnosis. In this approach, common latent features are extracted from different data sources based on sparse projection matrices and used to predict multiple disease severity levels; in return, the disease status can guide the discovery of relationships between data sources. The sparse projection matrices not only reveal interactions between data sources but also select groups of biomarkers related to the disease. Moreover, to take advantage of the linkage disequilibrium (LD) measuring the non-random association of alleles, we incorporate a graph Laplacian type of prior in the model. To learn the model from data, we develop an efficient variational inference algorithm. Analysis on an imaging genetics dataset for the study of Alzheimer’s Disease (AD) indicates that our model identifies biologically meaningful associations between genetic variations and MRI features, and achieves significantly higher accuracy for predicting ordinal AD stages than the competing methods.


Exploring 250,000 Movies with Association Discovery

#artificialintelligence

Hot on the heels of our Fall 2015 Release webinar including our Association Discovery (aka Association Rule Learning) implementation, we wanted to give this new capability a spin on our blog in order to get our readers warmed up.


Sparse Bayesian Multiview Learning for Simultaneous Association Discovery and Diagnosis of Alzheimer's Disease

AAAI Conferences

In the analysis and diagnosis of many diseases, such as the Alzheimer's disease (AD), two important and related tasks are usually required: i) selecting genetic and phenotypical markers for diagnosis, and ii) identifying associations between genetic and phenotypical features. While previous studies treat these two tasks separately, they are tightly coupled due to the same underlying biological basis. To harness their potential benefits for each other, we propose a new sparse Bayesian approach to jointly carry out the two important and related tasks. In our approach, we extract common latent features from different data sources by sparse projection matrices and then use the latent features to predict disease severity levels; in return, the disease status can guide the learning of sparse projection matrices, which not only reveal interactions between data sources but also select groups of related biomarkers. In order to boost the learning of sparse projection matrices, we further incorporate graph Laplacian priors encoding the valuable linkage disequilibrium (LD) information. To efficiently estimate the model, we develop a variational inference algorithm. Analysis on an imaging genetics dataset for AD study shows that our model discovers biologically meaningful associations between single nucleotide polymorphisms (SNPs) and magnetic resonance imaging (MRI) features, and achieves significantly higher accuracy for predicting ordinal AD stages than competitive methods.