A solvable connectionist model of immediate recall of ordered lists

Neural Information Processing Systems

A model of short-term memory for serially ordered lists of verbal stimuli is proposed as an implementation of the'articulatory loop' thought to mediate this type of memory (Baddeley, 1986). The model predicts the presence of a repeatable time-varying'context' signal coding the timing of items' presentation in addition to a store of phonological information and a process of serial rehearsal. Items are associated with context nodes and phonemes by Hebbian connections showing both short and long term plasticity. Items are activated by phonemic input during presentation and reactivated by context and phonemic feedback during output. Serial selection of items occurs via a winner-take-all interaction amongst items, with the winner subsequently receiving decaying inhibition. An approximate analysis of error probabilities due to Gaussian noise during output is presented. The model provides an explanatory account of the probability of error as a function of serial position, list length, word length, phonemic similarity, temporal grouping, item and list familiarity, and is proposed as the starting point for a model of rehearsal and vocabulary acquisition.


Dynamic Modelling of Chaotic Time Series with Neural Networks

Neural Information Processing Systems

In young barn owls raised with optical prisms over their eyes, these auditory maps are shifted to stay in register with the visual map, suggesting that the visual input imposes a frame of reference on the auditory maps. However, the optic tectum, the first site of convergence of visual with auditory information, is not the site of plasticity for the shift of the auditory maps; the plasticity occurs instead in the inferior colliculus, which contains an auditory map and projects into the optic tectum. We explored a model of the owl remapping in which a global reinforcement signal whose delivery is controlled by visual foveation. A hebb learning rule gated by reinforcement learned to appropriately adjust auditory maps. In addition, reinforcement learning preferentially adjusted the weights in the inferior colliculus, as in the owl brain, even though the weights were allowed to change throughout the auditory system. This observation raises the possibility that the site of learning does not have to be genetically specified, but could be determined by how the learning procedure interacts with the network architecture.


Analysis of Unstandardized Contributions in Cross Connected Networks

Neural Information Processing Systems

Understanding knowledge representations in neural nets has been a difficult problem. Principal components analysis (PCA) of contributions (products of sending activations and connection weights) has yielded valuable insights into knowledge representations, but much of this work has focused on the correlation matrix of contributions. The present work shows that analyzing the variance-covariance matrix of contributions yields more valid insights by taking account of weights.


Convergence Properties of the K-Means Algorithms

Neural Information Processing Systems

K-Means is a popular clustering algorithm used in many applications, including the initialization of more computationally expensive algorithms (Gaussian mixtures, Radial Basis Functions, Learning Vector Quantization and some Hidden Markov Models). The practice of this initialization procedure often gives the frustrating feeling that K-Means performs most of the task in a small fraction of the overall time. This motivated us to better understand this convergence speed. A second reason lies in the traditional debate between hard threshold (e.g.



Generalisation in Feedforward Networks

Neural Information Processing Systems

They provide in particular some theoretical bounds on the sample complexity, i.e. a minimal number of training samples assuring the desired accuracy with the desired confidence. However there are a few obvious deficiencies in these results: (i) the sample complexity bounds are unrealistically high (c.f. Section 4.), and (ii) for some networks they do not hold at all since VC-dimension is infinite, e.g.


Higher Order Statistical Decorrelation without Information Loss

Neural Information Processing Systems

A neural network learning paradigm based on information theory is proposed as a way to perform in an unsupervised fashion, redundancy reduction among the elements of the output layer without loss of information from the sensory input. The model developed performs nonlinear decorrelation up to higher orders of the cumulant tensors and results in probabilistic ally independent components of the output layer. This means that we don't need to assume Gaussian distribution neither at the input nor at the output. The theory presented is related to the unsupervised-learning theory of Barlow, which proposes redundancy reduction as the goal of cognition. When nonlinear units are used nonlinear principal component analysis is obtained.


A Computational Model of Prefrontal Cortex Function

Neural Information Processing Systems

Accumulating data from neurophysiology and neuropsychology have suggested two information processing roles for prefrontal cortex (PFC): 1) short-term active memory; and 2) inhibition. We present a new behavioral task and a computational model which were developed in parallel. The task was developed to probe both of these prefrontal functions simultaneously, and produces a rich set of behavioral data that act as constraints on the model. The model is implemented in continuous-time, thus providing a natural framework in which to study the temporal dynamics of processing in the task. We show how the model can be used to examine the behavioral consequences of neuromodulation in PFC. Specifically, we use the model to make novel and testable predictions regarding the behavioral performance of schizophrenics, who are hypothesized to suffer from reduced dopaminergic tone in this brain area.


Correlation and Interpolation Networks for Real-time Expression Analysis/Synthesis

Neural Information Processing Systems

We describe a framework for real-time tracking of facial expressions that uses neurally-inspired correlation and interpolation methods. A distributed view-based representation is used to characterize facial state, and is computed using a replicated correlation network. The ensemble response of the set of view correlation scores is input to a network based interpolation method, which maps perceptual state to motor control states for a simulated 3-D face model. Activation levels of the motor state correspond to muscle activations in an anatomically derived model. By integrating fast and robust 2-D processing with 3-D models, we obtain a system that is able to quickly track and interpret complex facial motions in real-time.


Boltzmann Chains and Hidden Markov Models

Neural Information Processing Systems

Statistical models of discrete time series have a wide range of applications, most notably to problems in speech recognition (Juang & Rabiner, 1991) and molecular biology (Baldi, Chauvin, Hunkapiller, & McClure, 1992). A common problem in these fields is to find a probabilistic model, and a set of model parameters, that 436 Lawrence K. Saul, Michael I. Jordan