Fast Learning in Multi-Resolution Hierarchies

Neural Information Processing Systems

A variety of approaches to adaptive information processing have been developed by workers in disparate disciplines. These include the large body of literature on approximation and interpolation techniques (curve and surface fitting), the linear, real-time adaptive signal processing systems (such as the adaptive linear combiner and the Kalman filter), and most recently, the reincarnation of nonlinear neural network models such as the multilayer perceptron. Each of these methods has its strengths and weaknesses. The curve and surface fitting techniques are excellent for off-line data analysis, but are typically not formulated withreal-time applications in mind. The linear techniques of adaptive signal processing and adaptive control are well-characterized, but are limited to applications forwhich linear descriptions are appropriate. Finally, neural network learning models such as back propagation have proven extremely versatile at learning a wide variety of nonlinear mappings, but tend to be very slow computationally and are not yet well characterized.


Consonant Recognition by Modular Construction of Large Phonemic Time-Delay Neural Networks

Neural Information Processing Systems

Encouraged by these results we wanted to explore the question, how we might expand on these models to make them useful for the design of speech recognition systems. A problem that emerges as we attempt to apply neural network models to the full speech recognition problem is the problem of scaling. Simply extending neural networks to ever larger structures and retraining them as one monolithic net quickly exceeds the capabilities of the fastest and largest supercomputers. The search complexity of finding a good solutions in a huge space of possible network configurations also soon assumes unmanageable proportions. Moreover, having to decide on all possible classes for recognition ahead of time as well as collecting sufficient data to train such a large monolithic network is impractical to say the least. In an effort to extend our models from small recognition tasks to large scale speech recognition systems, we must therefore explore modularity and incremental learning as design strategies to break up a large learning task into smaller subtasks. Breaking up a large task into subtasks to be tackled by individual black boxes interconnected in ad hoc arrangements, on the other hand, would mean to abandon one of the most attractive aspects of connectionism: the ability to perform complex constraint satisfaction in a massively parallel and interconnected fashion, in view of an overall optimal perfonnance goal.


Does the Neuron "Learn" like the Synapse?

Neural Information Processing Systems

An improved learning paradigm that offers a significant reduction in computation timeduring the supervised learning phase is described. It is based on extending the role that the neuron plays in artificial neural systems. Prior work has regarded the neuron as a strictly passive, nonlinear processing element, and the synapse on the other hand as the primary source of information processing and knowledge retention. In this work, the role of the neuron is extended insofar as allowing itsparameters to adaptively participate in the learning phase. The temperature of the sigmoid function is an example of such a parameter.


Learning by Choice of Internal Representations

Neural Information Processing Systems

We introduce a learning algorithm for multilayer neural networks composedof binary linear threshold elements. Whereas existing algorithms reduce the learning process to minimizing a cost function over the weights, our method treats the internal representations asthe fundamental entities to be determined. Once a correct set of internal representations is arrived at, the weights are found by the local aild biologically plausible Perceptron Learning Rule (PLR). We tested our learning algorithm on four problems: adjacency, symmetry, parity and combined symmetry-parity.



Modeling Small Oscillating Biological Networks in Analog VLSI

Neural Information Processing Systems

We have used analog VLSI technology to model a class of small oscillating biologicalneural circuits known as central pattern generators (CPG). These circuits generate rhythmic patterns of activity which drive locomotor behaviour in the animal. We have designed, fabricated, and tested a model neuron circuit which relies on many of the same mechanisms as a biological central pattern generator neuron, such as delays and internal feedback. We show that this neuron can be used to build several small circuits based on known biological CPG circuits, and that these circuits produce patterns of output which are very similar to the observed biological patterns. To date, researchers in applied neural networks have tended to focus on mammalian systemsas the primary source of potentially useful biological information.



A Massively Parallel Self-Tuning Context-Free Parser

Neural Information Processing Systems

ABSTRACT The Parsing and Learning System(PALS) is a massively parallel self-tuning context-free parser. It is capable of parsing sentences of unbounded length mainly due to its parse-tree representation scheme. The system is capable of improving its parsing performance through the presentation of training examples. INTRODUCTION Recent PDP research[Rumelhart et al.- 1986; Feldman and Ballard, 1982; Lippmann, 1987] involving natural language processtng[Fanty, 1988; Selman, 1985; Waltz and Pollack, 1985] have unrealistically restricted sentences to a fixed length. A solution to this problem was presented in the system CONPARSE[Charniak and Santos.


Linear Learning: Landscapes and Algorithms

Neural Information Processing Systems

In particular we examine what happens when the ntunber of layers is large or when the connectivity between layers is local and investigate some of the properties of an autoassociative algorithm. Notation will be as in [1] where additional motivations and references can be found. It is usual to criticize linear networks because "linear functions do not compute" and because several layers can always be reduced to one by the proper multiplication of matrices. However this is not the point of view adopted here. It is assumed that the architecture of the network is given (and could perhaps depend on external constraints) and the purpose is to understand what happens during the learning phase, what strategies are adopted by a synaptic weights modifying algorithm, ... [see also Cottrell et al. (1988) for an example of an application andthe work of Linsker (1988) on the emergence of feature detecting units in linear networks}.


Neural Net Receivers in Multiple Access-Communications

Neural Information Processing Systems

The application of neural networks to the demodulation of spread-spectrum signals in a multiple-access environment is considered. This study is motivated in large part by the fact that, in a multiuser system, the conventional (matched filter) receiversuffers severe performance degradation as the relative powers of the interfering signals become large (the "near-far" problem). Furthermore, the optimum receiver, which alleviates the near-far problem, is too complex to be of practical use. Receivers based on multi-layer perceptrons are considered as a simple and robust alternative to the optimum solution.The optimum receiver is used to benchmark the performance of the neural net receiver; in particular, it is proven to be instrumental in identifying the decision regions of the neural networks. The back-propagation algorithm and a modified version of it are used to train the neural net. An importance sampling technique is introduced to reduce the number of simulations necessary to evaluate the performance of neural nets.