Distributed Lion for Communication Efficient Distributed Training
The Lion optimizer has been a promising competitor with the AdamW for training large AI models, with advantages in memory, computation, and sample efficiency. In this paper, we introduce Distributed Lion, an innovative adaptation of Lion for distributed training environments. Leveraging the sign operator in Lion, our Distributed Lion only requires to communicate binary or lower-precision vectors between workers to the center server, significantly reducing the communication cost. Our theoretical analysis confirms Distributed Lion's convergence properties. Empirical results demonstrate its robustness across a range of tasks, worker counts, and batch sizes, on both vision and language problems. Notably, Distributed Lion attains comparable performance to standard Lion or AdamW optimizers applied on aggregated gradients, but with significantly reduced communication bandwidth. This feature is particularly advantageous for training large models. In addition, we also demonstrate that Distributed Lion presents a more favorable performancebandwidth balance compared to existing efficient distributed methods such as deep gradient compression and ternary gradients.
CARLANE: A Lane Detection Benchmark for Unsupervised Domain Adaptation from Simulation to multiple Real-World Domains Julian Gebele Johann Haselberger University of Applied Science Kempten
Unsupervised Domain Adaptation demonstrates great potential to mitigate domain shifts by transferring models from labeled source domains to unlabeled target domains. While Unsupervised Domain Adaptation has been applied to a wide variety of complex vision tasks, only few works focus on lane detection for autonomous driving. This can be attributed to the lack of publicly available datasets. To facilitate research in these directions, we propose CARLANE, a 3-way sim-to-real domain adaptation benchmark for 2D lane detection.
Learning 3D Equivariant Implicit Function with Patch-Level Pose-Invariant Representation
In this work, we are motivated by the fact that the local 3D patches repeatedly appear on 3D shapes/surfaces if the factor of poses is removed. Based on this observation, we propose the 3D patch-level equivariant implicit function (PEIF) based on the 3D patch-level pose-invariant representation, allowing us to reconstruct 3D surfaces by estimating equivariant displacement vector fields for query points. Specifically, our model is based on the pose-normalized query/patch pairs and enhanced by the proposed intrinsic patch geometry representation, modeling the intrinsic 3D patch geometry feature by learnable multi-head memory banks. Extensive experiments show that our model achieves state-of-the-art performance on multiple surface reconstruction datasets, and also exhibits better generalization to crossdataset shapes and robustness to arbitrary rotations.
Learn to code, they said: AI is already erasing some entry-level coding jobs
There's been a lot of talk in recent years about AI replacing the role of humans in the workforce. It's been unclear exactly if or when that would happen on a broader scale. However, this is already happening in one industry in particular: The tech industry. Researchers at the venture capital firm SignalFire recently released their "State of Talent Report" for 2025, which analyzes hiring and employment trends across the tech industry. The big takeaway, according to SignalFire's report, is that new graduate hiring has declined. Hiring levels for experienced roles like mid- and senior-level positions have remained strong, while entry-level tech jobs have taken a big hit.
Doubly Constrained Fair Clustering John Dickerson 1,2
The remarkable attention which fair clustering has received in the last few years has resulted in a significant number of different notions of fairness. Despite the fact that these notions are well-justified, they are often motivated and studied in a disjoint manner where one fairness desideratum is considered exclusively in isolation from the others. This leaves the understanding of the relations between different fairness notions as an important open problem in fair clustering. In this paper, we take the first step in this direction. Specifically, we consider the two most prominent demographic representation fairness notions in clustering: (1) Group Fairness (GF), where the different demographic groups are supposed to have close to population-level representation in each cluster and (2) Diversity in Center Selection (DS), where the selected centers are supposed to have close to population-level representation of each group. We show that given a constant approximation algorithm for one constraint (GF or DS only) we can obtain a constant approximation solution that satisfies both constraints simultaneously. Interestingly, we prove that any given solution that satisfies the GF constraint can always be post-processed at a bounded degradation to the clustering cost to additionally satisfy the DS constraint while the reverse is not true given a solution that satisfies DS instead. Furthermore, we show that both GF and DS are incompatible (having an empty feasibility set in the worst case) with a collection of other distance-based fairness notions. Finally, we carry experiments to validate our theoretical findings.