Few-shot Image Generation with Elastic Weight Consolidation Supplementary Material
In this supplementary material, we present more few-shot generation results evaluated extensively with different artistic domains where there are only a few examples available in practical. The goal is to illustrate the effectiveness of the proposed method in generating diverse high-quality results without being over-fitted to the few given examples. Figure 1 shows the generations of source and target domain by feeding the same latent code into the source and adapted model. It clearly tells that while the adaptation renders new appearance of target domain, other attributes such as the pose, glass and hairstyle, are well inherited and preserved from the source domain. For each target domain, we only use 10 examples for the adaptation and present 100 new results.
3a24b25a7b092a252166a1641ae953e7-AuthorFeedback.pdf
We thank the reviewers for their comments. Before we address individual concerns, we make some general comments. This new insight is an alternative, and much simpler, proof of Cohen et al.'s key This also opens up another avenue for future work, namely by finding better nonlinear Lipschitz guarantees. As mentioned above, the Expectation over Transformation attack of Athalye et al. has the opposite order of log and We will add this citation and a discussion of this interesting connection. Nevertheless, we will add this experiment to the final version of the paper. It is thus somewhat orthogonal to "PGD training" Our main contribution is not theoretical and we will update the draft to make this more clear.
Cross-model Control: Improving Multiple Large Language Models in One-time Training Jiayi Wu1, Hao Sun
The number of large language models (LLMs) with varying parameter scales and vocabularies is increasing. While they deliver powerful performance, they also face a set of common optimization needs to meet specific requirements or standards, such as instruction following or avoiding the output of sensitive information from the real world. However, how to reuse the fine-tuning outcomes of one model to other models to reduce training costs remains a challenge. To bridge this gap, we introduce Cross-model Control (CMC), a method that improves multiple LLMs in one-time training with a portable tiny language model. Specifically, we have observed that the logit shift before and after fine-tuning is remarkably similar across different models.
Handling correlated and repeated measurements with the smoothed multivariate square-root Lasso
A limitation of Lasso-type estimators is that the optimal regularization parameter depends on the unknown noise level. Estimators such as the concomitant Lasso address this dependence by jointly estimating the noise level and the regression coefficients. Additionally, in many applications, the data is obtained by averaging multiple measurements: this reduces the noise variance, but it dramatically reduces sample sizes and prevents refined noise modeling. In this work, we propose a concomitant estimator that can cope with complex noise structure by using nonaveraged measurements, its data-fitting term arising as a smoothing of the nuclear norm. The resulting optimization problem is convex and amenable, thanks to smoothing theory, to state-of-the-art optimization techniques that leverage the sparsity of the solutions. Practical benefits are demonstrated on toy datasets, realistic simulated data and real neuroimaging data.
Think Globally, Act Locally: A Deep Neural Network Approach to High-Dimensional Time Series Forecasting
Rajat Sen, Hsiang-Fu Yu, Inderjit S. Dhillon
Forecasting high-dimensional time series plays a crucial role in many applications such as demand forecasting and financial predictions. Modern datasets can have millions of correlated time-series that evolve together, i.e they are extremely high dimensional (one dimension for each individual time-series). There is a need for exploiting global patterns and coupling them with local calibration for better prediction. However, most recent deep learning approaches in the literature are one-dimensional, i.e, even though they are trained on the whole dataset, during prediction, the future forecast for a single dimension mainly depends on past values from the same dimension. In this paper, we seek to correct this deficiency and propose DeepGLO, a deep forecasting model which thinks globally and acts locally. In particular, DeepGLO is a hybrid model that combines a global matrix factorization model regularized by a temporal convolution network, along with another temporal network that can capture local properties of each time-series and associated covariates. Our model can be trained effectively on high-dimensional but diverse time series, where different time series can have vastly different scales, without a priori normalization or rescaling. Empirical results demonstrate that DeepGLO can outperform state-of-the-art approaches; for example, we see more than 25% improvement in WAPE over other methods on a public dataset that contains more than 100K-dimensional time series.
The Value of Reward Lookahead in Reinforcement Learning
In reinforcement learning (RL), agents sequentially interact with changing environments while aiming to maximize the obtained rewards. Usually, rewards are observed only after acting, and so the goal is to maximize the expected cumulative reward. Yet, in many practical settings, reward information is observed in advance - prices are observed before performing transactions; nearby traffic information is partially known; and goals are oftentimes given to agents prior to the interaction. In this work, we aim to quantifiably analyze the value of such future reward information through the lens of competitive analysis.
Improving Textual Network Learning with Variational Homophilic Embeddings
Wenlin Wang, Chenyang Tao, Zhe Gan, Guoyin Wang, Liqun Chen, Xinyuan Zhang, Ruiyi Zhang, Qian Yang, Ricardo Henao, Lawrence Carin
The performance of many network learning applications crucially hinges on the success of network embedding algorithms, which aim to encode rich network information into low-dimensional vertex-based vector representations. This paper considers a novel variational formulation of network embeddings, with special focus on textual networks. Different from most existing methods that optimize a discriminative objective, we introduce Variational Homophilic Embedding (VHE), a fully generative model that learns network embeddings by modeling the semantic (textual) information with a variational autoencoder, while accounting for the structural (topology) information through a novel homophilic prior design. Homophilic vertex embeddings encourage similar embedding vectors for related (connected) vertices. The proposed VHE promises better generalization for downstream tasks, robustness to incomplete observations, and the ability to generalize to unseen vertices. Extensive experiments on real-world networks, for multiple tasks, demonstrate that the proposed method consistently achieves superior performance relative to competing state-of-the-art approaches.
Keep your swimming pool clean with these pool vacuum cleaners
Invest in a manual or robotic pool cleaner to keep your pool's water crystal clear. A swimming pool can be a fun and valuable addition to your home and property, but maintaining it and keeping its water clean is essential. Pool cleaners and vacuums play a pivotal role in achieving this by efficiently removing debris, algae and other harmful bacteria and contaminants that can compromise water quality. This proactive approach to pool maintenance ensures a safer swimming environment, clear blue water and extends the overall lifespan of the pool and its equipment. Many pool cleaners now cater to different water types, preferences and maintenance needs.