VISA: Variational Inference with Sequential Sample-Average Approximations
We present variational inference with sequential sample-average approximations (VISA), a method for approximate inference in computationally intensive models, such as those based on numerical simulations. VISA extends importance-weighted forward-KL variational inference (IWFVI) by employing a sequence of sampleaverage approximations, which are considered valid inside a trust region. This makes it possible to reuse model evaluations across multiple gradient steps, thereby reducing computational cost. We perform experiments on high-dimensional Gaussians, Lotka-Volterra dynamics, and a Pickover attractor. We demonstrate that VISA can achieve comparable approximation accuracy to standard importanceweighted forward-KL variational inference while requirering significantly fewer samples for conservatively chosen learning rates.
No Free Lunch in LLM Watermarking: Trade-offs in Watermarking Design Choices
Advances in generative models have made it possible for AI-generated text, code, and images to mirror human-generated content in many applications. Watermarking, a technique that aims to embed information in the output of a model to verify its source, is useful for mitigating the misuse of such AI-generated content. However, we show that common design choices in LLM watermarking schemes make the resulting systems surprisingly susceptible to attack--leading to fundamental trade-offs in robustness, utility, and usability. To navigate these trade-offs, we rigorously study a set of simple yet effective attacks on common watermarking systems, and propose guidelines and defenses for LLM watermarking in practice.
Segment Anything without Supervision
The Segmentation Anything Model (SAM) requires labor-intensive data labeling. We present Unsupervised SAM (UnSAM) for promptable and automatic wholeimage segmentation that does not require human annotations. UnSAM utilizes a divide-and-conquer strategy to "discover" the hierarchical structure of visual scenes.
Can Active Memory Replace Attention?
Several mechanisms to focus attention of a neural network on selected parts of its input or memory have been used successfully in deep learning models in recent years. Attention has improved image classification, image captioning, speech recognition, generative models, and learning algorithmic tasks, but it had probably the largest impact on neural machine translation. Recently, similar improvements have been obtained using alternative mechanisms that do not focus on a single part of a memory but operate on all of it in parallel, in a uniform way. Such mechanism, which we call active memory, improved over attention in algorithmic tasks, image processing, and in generative modelling. So far, however, active memory has not improved over attention for most natural language processing tasks, in particular for machine translation. We analyze this shortcoming in this paper and propose an extended model of active memory that matches existing attention models on neural machine translation and generalizes better to longer sentences. We investigate this model and explain why previous active memory models did not succeed. Finally, we discuss when active memory brings most benefits and where attention can be a better choice.
Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer Miao Lu
Aligning generative models with human preference via RLHF typically suffers from overoptimization, where an imperfectly learned reward model can misguide the generative model to output undesired responses. We investigate this problem in a principled manner by identifying the source of the misalignment as a form of distributional shift and uncertainty in learning human preferences. To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model; one that simultaneously minimizes the maximum likelihood estimation of the loss and a reward penalty term. The penalty term is introduced to prevent the policy from choosing actions with spurious high proxy rewards, resulting in provable sample efficiency of the algorithm under a partial coverage style condition. Moving from theory to practice, the proposed algorithm further enjoys an equivalent but surprisingly easy-to-implement reformulation. Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines: (i) a preference optimization loss that directly aligns the policy with human preference, and (ii) a supervised learning loss that explicitly imitates the policy with a (suitable) baseline distribution. In the context of aligning large language models (LLM), this objective fuses the direct preference optimization (DPO) loss with the supervised fine-tuning (SFT) loss to help mitigate the overoptimization towards undesired responses, for which we name the algorithm Regularized Preference Optimization (RPO). Experiments of aligning LLMs demonstrate the improved performance of RPO compared with DPO baselines.
PediatricsGPT: Large Language Models as Chinese Medical Assistants for Pediatric Applications
Developing intelligent pediatric consultation systems offers promising prospects for improving diagnostic efficiency, especially in China, where healthcare resources are scarce. Despite recent advances in Large Language Models (LLMs) for Chinese medicine, their performance is sub-optimal in pediatric applications due to inadequate instruction data and vulnerable training procedures. To address the above issues, this paper builds PedCorpus, a high-quality dataset of over 300,000 multi-task instructions from pediatric textbooks, guidelines, and knowledge graph resources to fulfil diverse diagnostic demands. Upon well-designed PedCorpus, we propose PediatricsGPT, the first Chinese pediatric LLM assistant built on a systematic and robust training pipeline. In the continuous pre-training phase, we introduce a hybrid instruction pre-training mechanism to mitigate the internal-injected knowledge inconsistency of LLMs for medical domain adaptation. Immediately, the full-parameter Supervised Fine-Tuning (SFT) is utilized to incorporate the general medical knowledge schema into the models. After that, we devise a direct following preference optimization to enhance the generation of pediatrician-like humanistic responses. In the parameter-efficient secondary SFT phase, a mixture of universal-specific experts strategy is presented to resolve the competency conflict between medical generalist and pediatric expertise mastery. Extensive results based on the metrics, GPT-4, and doctor evaluations on distinct downstream tasks show that PediatricsGPT consistently outperforms previous Chinese medical LLMs.
Mixed vine copulas as joint models of spike counts and local field potentials
Concurrent measurements of neural activity at multiple scales, sometimes performed with multimodal techniques, become increasingly important for studying brain function. However, statistical methods for their concurrent analysis are currently lacking. Here we introduce such techniques in a framework based on vine copulas with mixed margins to construct multivariate stochastic models. These models can describe detailed mixed interactions between discrete variables such as neural spike counts, and continuous variables such as local field potentials. We propose efficient methods for likelihood calculation, inference, sampling and mutual information estimation within this framework. We test our methods on simulated data and demonstrate applicability on mixed data generated by a biologically realistic neural network. Our methods hold the promise to considerably improve statistical analysis of neural data recorded simultaneously at different scales.
Learning to learn by gradient descent by gradient descent
Marcin Andrychowicz, Misha Denil, Sergio Gómez, Matthew W. Hoffman, David Pfau, Tom Schaul, Nando de Freitas
The move from hand-designed features to learned features in machine learning has been wildly successful. In spite of this, optimization algorithms are still designed by hand. In this paper we show how the design of an optimization algorithm can be cast as a learning problem, allowing the algorithm to learn to exploit structure in the problems of interest in an automatic way. Our learned algorithms, implemented by LSTMs, outperform generic, hand-designed competitors on the tasks for which they are trained, and also generalize well to new tasks with similar structure. We demonstrate this on a number of tasks, including simple convex problems, training neural networks, and styling images with neural art.