Dynamically-Adaptive Winner-Take-All Networks

Neural Information Processing Systems

Unfortunately, convergence of normal WTA networks is extremely sensitive to the magnitudes of their weights, which must be hand-tuned and which generally onlyprovide the right amount of inhibition across a relatively small range of initial conditions. This paper presents Dynamjcally Adaptive Winner-Telke-All (DA WTA) netw rls, which use a regulatory unit to provide the competitive inhibition to the units in the network. The DAWTA regulatory unit dynamically adjusts its level of activation during competition to provide the right amount of inhibition to differentiate betweencompetitors and drive a single winner. This dynamic adaptation allows DAWTA networks to perform the winner-lake-all function for nearly any network size or initial condition.


Time-Warping Network: A Hybrid Framework for Speech Recognition

Neural Information Processing Systems

Such systems attempt to combine the best features of both models: the temporal structure of HMMs and the discriminative power of neural networks. In this work we define a time-warping (1W) neuron that extends the operation of the fonnal neuron of a back-propagation network by warping the input pattern to match it optimally to its weights. We show that a single-layer network of TW neurons is equivalent to a Gaussian density HMMbased recognitionsystem.


The Efficient Learning of Multiple Task Sequences

Neural Information Processing Systems

I present a modular network architecture and a learning algorithm based on incremental dynamic programming that allows a single learning agent to learn to solve multiple Markovian decision tasks (MDTs) with significant transfer of learning across the tasks. I consider a class of MDTs, called composite tasks, formed by temporally concatenating a number of simpler, elemental MDTs. The architecture is trained on a set of composite and elemental MDTs. The temporal structure of a composite task is assumed to be unknown and the architecture learns to produce a temporal decomposition. It is shown that under certain conditions the solution of a composite MDT can be constructed by computationally inexpensive modifications of the solutions of its constituent elemental MDTs. 1 INTRODUCTION Most applications of domain independent learning algorithms have focussed on learning single tasks. Building more sophisticated learning agents that operate in complex environments will require handling multiple tasks/goals (Singh, 1992). Research effort on the scaling problem has concentrated on discovering faster learning algorithms, and while that will certainly help, techniques that allow transfer of learning across tasks will be indispensable for building autonomous learning agents that have to learn to solve multiple tasks. In this paper I consider a learning agent that interacts with an external, finite-state, discrete-time, stochastic dynamical environment and faces multiple sequences of Markovian decision tasks (MDTs).


VISIT: A Neural Model of Covert Visual Attention

Neural Information Processing Systems

Visual attention is the ability to dynamically restrict processing to a subset of the visual field. Researchers have long argued that such a mechanism is necessary to efficiently perform many intermediate level visual tasks. This paper describes VISIT, a novel neural network model of visual attention.


A Neural Network for Motion Detection of Drift-Balanced Stimuli

Neural Information Processing Systems

This paper briefly describes an artificial neural network for preattentive visual processing. The network is capable of determiuing image motioll in a type of stimulus which defeats most popular methods of motion detect.ion


Models Wanted: Must Fit Dimensions of Sleep and Dreaming

Neural Information Processing Systems

During waking and sleep, the brain and mind undergo a tightly linked and precisely specified set of changes in state. At the level of neurons, this process has been modeled by variations of Volterra-Lotka equations for cyclic fluctuations of brainstem cell populations. However, neural network models based upon rapidly developing knowledge ofthe specific population connectivities and their differential responses to drugs have not yet been developed. Furthermore, only the most preliminary attempts have been made to model across states. Some of our own attempts to link rapid eye movement (REM) sleep neurophysiology and dream cognition using neural network approaches are summarized in this paper.


HARMONET: A Neural Net for Harmonizing Chorales in the Style of J. S. Bach

Neural Information Processing Systems

The chord skeleton is obtained if eighth and sixteenth notes are viewed as omitable ornamentations. Furthermore, if the chords are conceived as harmonies with certain attributes such as "inversion" or "characteristic dissonances", the chorale is reducible to its harmonic skeleton, a thoroughbass-like representation (Figure 2).



Neural Control for Rolling Mills: Incorporating Domain Theories to Overcome Data Deficiency

Neural Information Processing Systems

In a Bayesian framework, we give a principled account of how domainspecific prior knowledge such as imperfect analytic domain theories can be optimally incorporated into networks of locally-tuned units: by choosing a specific architecture and by applying a specific training regimen. Our method proved successful in overcoming the data deficiency problem in a large-scale application to devise a neural control for a hot line rolling mill. It achieves in this application significantly higher accuracy than optimally-tuned standard algorithms such as sigmoidal backpropagation, and outperforms the state-of-the-art solution.


CCD Neural Network Processors for Pattern Recognition

Neural Information Processing Systems

A CCD-based processor that we call the NNC2 is presented. The NNC2 implements a fully connected 192-input, 32-output two-layer network and can be cascaded to form multilayer networks or used in parallel for additional input or output nodes. The device computes 1.92 x 10