Perception
W. H. Freeman. See also: An Introduction to Perception. Macmillan, 1975 (http://psych.unl.edu/psycrs/350lab/lab12_exp/rock.pdf). The effect of inattention on form perception. Rock, Irvin; Gutman, Daniel. Journal of Experimental Psychology: Human Perception and Performance, Vol 7(2), Apr 1981, 275-285 (http://psycnet.apa.org/journals/xhp/7/2/275/). Irvin Rock, Joseph DiVita, A case of viewer-centered object perception, Cognitive Psychology, Volume 19, Issue 2, April 1987, Pages 280-293 (http://www.sciencedirect.com/science/article/pii/0010028587900132). Rock, Irvin. The perception of disoriented figures. Scientific American, Vol 230(1), Jan 1974, 78-85 (https://www.jstor.org/stable/pdf/24949985.pdf?seq=1#page_scan_tab_contents). Irvin Rock, Christopher M Linnett, Paul Grant, Arien Mack, Perception without attention: Results of a new method, Cognitive Psychology, Volume 24, Issue 4, October 1992, Pages 502-534 (http://www.sciencedirect.com/science/article/pii/001002859290017V). Irvin Rock (ed.). Indirect Perception. MIT Press, 1997 (https://books.google.com/books?isbn=0262181770). Arien Mack and Irvin Rock. Inattentional Blindness, MIT Press, 1998. (https://books.google.com/books?isbn=0262133393).
RULEMASTER: A second-generation knowledge-engineering facility
Michie, D. | Muggleton, S. | Zubrick, S.
Simulation and expert systems are remarkably similar. Both employ various representations to model some aspect of an uncertain world, with the model being formed as a piece of com puter software. This is then employed to aid decision making. Ideas about combining simulation and expert systems are presented, and a taxonomy is developed. It is concluded that the most fruitful areas of cross-fertilization are advice-giving ex pert systems that assist the simulation scientist and simulation user, new simulation tools built from knowledge-based tools, and intelligent front ends for simulation packages. Advice-giving systems will increasingly be part of simulation environments, rather than stand alone.
Problem solving techniques for the design of algorithms
"By studying the problem-solving techniques that people use to design algorithms we can learn something about building systems that automatically derive algorithms or assist human designers. In this paper we present a model of algorithm design based on our analysis of the protocols of two subjects designing three convex hull algorithms. The subjects work mainly in a data-flow problem space in which the objects are representations of partially specified algorithms. A small number of general-purpose operators construct and modify the representations; these operators are adapted to the current problem state by means-ends analysis. The problem space also includes knowledge-rich schemas such as divide and conquer that subjects incorporate into their algorithms. A particularly versatile problem-solving method in this problem space is symbolic execution, which can be used to refine, verify, or explain components of an algorithm. The subjects also work in a task-domain space about geometry. The interplay between problem solving in the two spaces makes possible the process of discovery. We have observed that the time a subject takes to design an algorithm is proportional to the number of components in the algorithm's data-flow representation. Finally, the details of the problem spaces provide a model for building a robust automated system." Information Processing and Management 20(l-2):97-118.
Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project
Buchanan, Bruce G., Shortliffe, Edward H.
Artificial intelligence, or AI, is largely an experimental science—at least as much progress has been made by building and analyzing programs as by examining theoretical questions. MYCIN is one of several well-known programs that embody some intelligence and provide data on the extent to which intelligent behavior can be programmed. As with other AI programs, its development was slow and not always in a forward direction. But we feel we learned some useful lessons in the course of nearly a decade of work on MYCIN and related programs. In this book we share the results of many experiments performed in that time, and we try to paint a coherent picture of the work. The book is intended to be a critical analysis of several pieces of related research, performed by a large number of scientists. We believe that the whole field of AI will benefit from such attempts to take a detailed retrospective look at experiments, for in this way the scientific foundations of the field will gradually be defined. It is for all these reasons that we have prepared this analysis of the MYCIN experiments.
The complete book in a single file.
Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project
Artificial intelligence, or AI, is largely an experimental science—at least as much progress has been made by building and analyzing programs as by examining theoretical questions. MYCIN is one of several well-known programs that embody some intelligence and provide data on the extent to which intelligent behavior can be programmed. As with other AI programs, its development was slow and not always in a forward direction. But we feel we learned some useful lessons in the course of nearly a decade of work on MYCIN and related programs. In this book we share the results of many experiments performed in that time, and we try to paint a coherent picture of the work. The book is intended to be a critical analysis of several pieces of related research, performed by a large number of scientists. We believe that the whole field of AI will benefit from such attempts to take a detailed retrospective look at experiments, for in this way the scientific foundations of the field will gradually be defined. It is for all these reasons that we have prepared this analysis of the MYCIN experiments.ContentsContributorsForewordAllen NewellPrefacePart One: BackgroundChapter 1—The Context of the MYCIN ExperimentsChapter 2—The Origin of Rule-Based Systems in AIRandall Davis and Jonathan J. KingPart Two: Using RulesChapter 3—The Evolution of MYCIN’s Rule FormChapter 4—The Structure of the MYCIN SystemWilliam van MelleChapter 5—Details of the Consultation SystemEdward H. ShortliffeChapter 6—Details of the Revised Therapy AlgorithmWilliam J. ClanceyPart Three: Building a Knowledge BaseChapter 7—Knowledge EngineeringChapter 8—Completeness and Consistency in a Rule-Based SystemMotoi Suwa, A. Carlisle Scott, and Edward H. ShortliffeChapter 9—Interactive Transfer of ExpertiseRandall Davis[#p4]] Part Four: Reasoning Under UncertaintyChapter 10—Uncertainty and Evidential SupportChapter 11—A Model of Inexact Reasoning in MedicineEdward H. Shortliffe and Bruce G. BuchananChapter 12—Probabilistic Reasoning and Certainty FactorsJ. Barclay AdamsChapter 13—The Dempster-Shafer Theory of EvidenceJean Gordon and Edward H. ShortliffePart Five: Generalizing MYCINChapter 14—Use of the MYCIN Inference EngineChapter 15—EMYCIN: A Knowledge Engineer’s Tool for Constructing Rule-Based Expert SystemsWilliam van Melle, Edward H. Shortliffe, and Bruce G. BuchananChapter 16—Experience Using EMYCINJames S. Bennett and Robert S. EngelmorePart Six: Explaining the ReasoningChapter 17—Explanation as a Topic of AI ResearchChapter 18—Methods for Generating ExplanationsA. Carlisle Scott, William J. Clancey, Randall Davis, and Edward H. ShortliffeChapter 19—Specialized Explanations for Dosage SelectionSharon Wraith Bennett and A. Carlisle ScottChapter 20—Customized Explanations Using Causal KnowledgeJerold W. Wallis and Edward H. ShortliffePart Seven: Using Other RepresentationsChapter 21—Other Representation FrameworksChapter 22—Extensions to the Rule-Based Formalism for a Monitoring TaskLawrence M. Fagan, John C. Kunz, Edward A. Feigenbaum, and John J. OsbornChapter 23—A Representation Scheme Using Both Frames and RulesJanice S. AikinsChapter 24—Another Look at FramesDavid E. Smith and Jan E. ClaytonPart Eight: TutoringChapter 25—Intelligent Computer-Aided InstructionChapter 26—Use of MYCIN’s Rules for TutoringWilliam J. ClanceyPart Nine: Augmenting the RulesChapter 27—Additional Knowledge StructuresChapter 28—Meta-Level KnowledgeRandall Davis and Bruce G. BuchananChapter 29—Extensions to Rules for Explanation and TutoringWilliam J. ClanceyPart Ten: Evaluating PerformanceChapter 30—The Problem of EvaluationChapter 31—An Evaluation of MYCIN’s AdviceVictor L. Yu, Lawrence M. Fagan, Sharon Wraith Bennett, William J . Clancey, A. Carlisle Scott, John F. Hannigan, Robert L. Blum, Bruce G. Buchanan, and Stanley N. CohenPart Eleven: Designing for Human UseChapter 32—Human Engineering of Medical Expert SystemsChapter 33—Strategies for Understanding Structured EnglishAlain BonnetChapter 34—An Analysis of Physicians’ AttitudesRandy L. Teach and Edward H. ShortliffeChapter 35—An Expert System for Oncology Protocol ManagementEdward H. Shortliffe, A. Carlisle Scott, Miriam B. Bischoff, A. Bruce Campbell, William van MeUe, and Charlotte D. JacobsPart Twelve: ConclusionsChapter 36—Major Lessons from This WorkEpilogAppendixReferencesName IndexSubject IndexReading, MA: Addison-Wesley Publishing Co., Inc.
Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project
Artificial intelligence, or AI, is largely an experimental science—at least as much progress has been made by building and analyzing programs as by examining theoretical questions. MYCIN is one of several well-known programs that embody some intelligence and provide data on the extent to which intelligent behavior can be programmed. As with other AI programs, its development was slow and not always in a forward direction. But we feel we learned some useful lessons in the course of nearly a decade of work on MYCIN and related programs. In this book we share the results of many experiments performed in that time, and we try to paint a coherent picture of the work. The book is intended to be a critical analysis of several pieces of related research, performed by a large number of scientists. We believe that the whole field of AI will benefit from such attempts to take a detailed retrospective look at experiments, for in this way the scientific foundations of the field will gradually be defined. It is for all these reasons that we have prepared this analysis of the MYCIN experiments.ContentsContributorsForewordAllen NewellPrefacePart One: BackgroundChapter 1—The Context of the MYCIN ExperimentsChapter 2—The Origin of Rule-Based Systems in AIRandall Davis and Jonathan J. KingPart Two: Using RulesChapter 3—The Evolution of MYCIN’s Rule FormChapter 4—The Structure of the MYCIN SystemWilliam van MelleChapter 5—Details of the Consultation SystemEdward H. ShortliffeChapter 6—Details of the Revised Therapy AlgorithmWilliam J. ClanceyPart Three: Building a Knowledge BaseChapter 7—Knowledge EngineeringChapter 8—Completeness and Consistency in a Rule-Based SystemMotoi Suwa, A. Carlisle Scott, and Edward H. ShortliffeChapter 9—Interactive Transfer of ExpertiseRandall Davis[#p4]] Part Four: Reasoning Under UncertaintyChapter 10—Uncertainty and Evidential SupportChapter 11—A Model of Inexact Reasoning in MedicineEdward H. Shortliffe and Bruce G. BuchananChapter 12—Probabilistic Reasoning and Certainty FactorsJ. Barclay AdamsChapter 13—The Dempster-Shafer Theory of EvidenceJean Gordon and Edward H. ShortliffePart Five: Generalizing MYCINChapter 14—Use of the MYCIN Inference EngineChapter 15—EMYCIN: A Knowledge Engineer’s Tool for Constructing Rule-Based Expert SystemsWilliam van Melle, Edward H. Shortliffe, and Bruce G. BuchananChapter 16—Experience Using EMYCINJames S. Bennett and Robert S. EngelmorePart Six: Explaining the ReasoningChapter 17—Explanation as a Topic of AI ResearchChapter 18—Methods for Generating ExplanationsA. Carlisle Scott, William J. Clancey, Randall Davis, and Edward H. ShortliffeChapter 19—Specialized Explanations for Dosage SelectionSharon Wraith Bennett and A. Carlisle ScottChapter 20—Customized Explanations Using Causal KnowledgeJerold W. Wallis and Edward H. ShortliffePart Seven: Using Other RepresentationsChapter 21—Other Representation FrameworksChapter 22—Extensions to the Rule-Based Formalism for a Monitoring TaskLawrence M. Fagan, John C. Kunz, Edward A. Feigenbaum, and John J. OsbornChapter 23—A Representation Scheme Using Both Frames and RulesJanice S. AikinsChapter 24—Another Look at FramesDavid E. Smith and Jan E. ClaytonPart Eight: TutoringChapter 25—Intelligent Computer-Aided InstructionChapter 26—Use of MYCIN’s Rules for TutoringWilliam J. ClanceyPart Nine: Augmenting the RulesChapter 27—Additional Knowledge StructuresChapter 28—Meta-Level KnowledgeRandall Davis and Bruce G. BuchananChapter 29—Extensions to Rules for Explanation and TutoringWilliam J. ClanceyPart Ten: Evaluating PerformanceChapter 30—The Problem of EvaluationChapter 31—An Evaluation of MYCIN’s AdviceVictor L. Yu, Lawrence M. Fagan, Sharon Wraith Bennett, William J . Clancey, A. Carlisle Scott, John F. Hannigan, Robert L. Blum, Bruce G. Buchanan, and Stanley N. CohenPart Eleven: Designing for Human UseChapter 32—Human Engineering of Medical Expert SystemsChapter 33—Strategies for Understanding Structured EnglishAlain BonnetChapter 34—An Analysis of Physicians’ AttitudesRandy L. Teach and Edward H. ShortliffeChapter 35—An Expert System for Oncology Protocol ManagementEdward H. Shortliffe, A. Carlisle Scott, Miriam B. Bischoff, A. Bruce Campbell, William van MeUe, and Charlotte D. JacobsPart Twelve: ConclusionsChapter 36—Major Lessons from This WorkEpilogAppendixReferencesName IndexSubject IndexReading, MA: Addison-Wesley Publishing Co., Inc.