GTM: A Principled Alternative to the Self-Organizing Map
Bishop, Christopher M., Svensén, Markus, Williams, Christopher K. I.
The Self-Organizing Map (SOM) algorithm has been extensively studied and has been applied with considerable success to a wide variety of problems. However, the algorithm is derived from heuristic ideas and this leads to a number of significant limitations. In this paper, we consider the problem of modelling the probability density of data in a space of several dimensions in terms of a smaller number of latent, or hidden, variables. We introduce a novel form of latent variable model, which we call the GTM algorithm (for Generative Topographic Mapping), which allows general nonlinear transformations from latent space to data space, and which is trained using the EM (expectation-maximization) algorithm. Our approach overcomes the limitations of the SOM, while introducing no significant disadvantages. We demonstrate the performance of the GTM algorithm on simulated data from flow diagnostics for a multiphase oil pipeline.
Learning Exact Patterns of Quasi-synchronization among Spiking Neurons from Data on Multi-unit Recordings
Martignon, Laura, Laskey, Kathryn B., Deco, Gustavo, Vaadia, Eilon
This paper develops arguments for a family of temporal log-linear models to represent spatiotemporal correlations among the spiking events in a group of neurons. The models can represent not just pairwise correlations but also correlations of higher order. Methods are discussed for inferring the existence or absence of correlations and estimating their strength. A frequentist and a Bayesian approach to correlation detection are compared.
Spatiotemporal Coupling and Scaling of Natural Images and Human Visual Sensitivities
We study the spatiotemporal correlation in natural time-varying images and explore the hypothesis that the visual system is concerned with the optimal coding of visual representation through spatiotemporal decorrelation of the input signal. Based on the measured spatiotemporal power spectrum, the transform needed to decorrelate input signal is derived analytically and then compared with the actual processing observed in psychophysical experiments.
Interpolating Earth-science Data using RBF Networks and Mixtures of Experts
We present a mixture of experts (ME) approach to interpolate sparse, spatially correlated earth-science data. Kriging is an interpolation method which uses a global covariation model estimated from the data to take account of the spatial dependence in the data. Based on the close relationship between kriging and the radial basis function (RBF) network (Wan & Bone, 1996), we use a mixture of generalized RBF networks to partition the input space into statistically correlated regions and learn the local covariation model of the data in each region. Applying the ME approach to simulated and real-world data, we show that it is able to achieve good partitioning of the input space, learn the local covariation models and improve generalization.
Learning Exact Patterns of Quasi-synchronization among Spiking Neurons from Data on Multi-unit Recordings
Martignon, Laura, Laskey, Kathryn B., Deco, Gustavo, Vaadia, Eilon
This paper develops arguments for a family of temporal log-linear models to represent spatiotemporal correlations among the spiking events in a group of neurons. The models can represent not just pairwise correlations but also correlations of higher order. Methods are discussed for inferring the existence or absence of correlations and estimating their strength. A frequentist and a Bayesian approach to correlation detection are compared.
Efficient Nonlinear Control with Actor-Tutor Architecture
A new reinforcement learning architecture for nonlinear control is proposed. A direct feedback controller, or the actor, is trained by a value-gradient based controller, or the tutor. This architecture enables both efficient use of the value function and simple computation for real-time implementation. Good performance was verified in multidimensional nonlinear control tasks using Gaussian softmax networks.
Spectroscopic Detection of Cervical Pre-Cancer through Radial Basis Function Networks
Tumer, Kagan, Ramanujam, Nirmala, Richards-Kortum, Rebecca R., Ghosh, Joydeep
The mortality related to cervical cancer can be substantially reduced through early detection and treatment. However, current detection techniques, such as Pap smear and colposcopy, fail to achieve a concurrently high sensitivity and specificity. In vivo fluorescence spectroscopy is a technique which quickly, noninvasively and quantitatively probes the biochemical and morphological changes that occur in precancerous tissue. RBF ensemble algorithms based on such spectra provide automated, and near realtime implementation of pre-cancer detection in the hands of nonexperts. The results are more reliable, direct and accurate than those achieved by either human experts or multivariate statistical algorithms. 1 Introduction Cervical carcinoma is the second most common cancer in women worldwide, exceeded only by breast cancer (Ramanujam et al., 1996). The mortality related to cervical cancer can be reduced if this disease is detected at the precancerous state, known as squamous intraepitheliallesion (SIL). Currently, a Pap smear is used to 982 K. Turner, N. Ramanujam, R. Richards-Kortum and J. Ghosh screen for cervical cancer {Kurman et al., 1994}. In a Pap test, a large number of cells obtained by scraping the cervical epithelium are smeared onto a slide which is then fixed and stained for cytologic examination.
Regression with Input-Dependent Noise: A Bayesian Treatment
Bishop, Christopher M., Quazaz, Cazhaow S.
In most treatments of the regression problem it is assumed that the distribution of target data can be described by a deterministic function of the inputs, together with additive Gaussian noise having constant variance. The use of maximum likelihood to train such models then corresponds to the minimization of a sum-of-squares error function. In many applications a more realistic model would allow the noise variance itself to depend on the input variables. However, the use of maximum likelihood to train such models would give highly biased results. In this paper we show how a Bayesian treatment can allow for an input-dependent variance while overcoming the bias of maximum likelihood.