Correlates of Attention in a Model of Dynamic Visual Recognition
Given a set of objects in the visual field, how does the the visual system learn to attend to a particular object of interest while ignoring the rest? How are occlusions and background clutter so effortlessly discounted for when recognizing a familiar object? In this paper, we attempt to answer these questions in the context of a Kalman filter-based model of visual recognition that has previously proved useful in explaining certain neurophysiological phenomena such as endstopping and related extra-classical receptive field effects in the visual cortex. By using results from the field of robust statistics, we describe an extension of the Kalman filter model that can handle multiple objects in the visual field. The resulting robust Kalman filter model demonstrates how certain forms of attention can be viewed as an emergent property of the interaction between top-down expectations and bottom-up signals.
A Neural Network Model of Naive Preference and Filial Imprinting in the Domestic Chick
Filial imprinting in domestic chicks is of interest in psychology, biology, and computational modeling because it exemplifies simple, rapid, innately programmed learning which is biased toward learning about some objects. Hom et al. have recently discovered a naive visual preference for heads and necks which develops over the course of the first three days of life. The neurological basis of this predisposition is almost entirely unknown; that of imprinting-related learning is fairly clear. This project is the first model of the predisposition consistent with what is known about learning in imprinting. The model develops the predisposition appropriately, learns to "approach" a training object, and replicates one interaction between the two processes. Future work will replicate more interactions between imprinting and the predisposition in chicks, and analyze why the system works.
Estimating Dependency Structure as a Hidden Variable
Meila, Marina, Jordan, Michael I.
This paper introduces a probability model, the mixture of trees that can account for sparse, dynamically changing dependence relationships. We present a family of efficient algorithms that use EM and the Minimum Spanning Tree algorithm to find the ML and MAP mixture of trees for a variety of priors, including the Dirichlet and the MDL priors.
2D Observers for Human 3D Object Recognition?
Further, the greater the similarity between objects, the stronger is the dependence on object appearance, and the more important twodimensional (2D) image information becomes. These findings, however, do not rule out the use of 3D structural information in recognition, and the degree to which 3D information is used in visual memory is an important issue. Liu, Knill, & Kersten (1995) showed that any model that is restricted to rotations in the image plane of independent 2D templates could not account for human performance in discriminating novel object views. We now present results from models of generalized radial basis functions (GRBF), 2D nearest neighbor matching that allows 2D affine transformations, and a Bayesian statistical estimator that integrates over all possible 2D affine transformations. The performance of the human observers relative to each of the models is better for the novel views than for the familiar template views, suggesting that humans generalize better to novel views from template views. The Bayesian estimator yields the optimal performance with 2D affine transformations and independent 2D templates. Therefore, models of 2D affine matching operations with independent 2D templates are unlikely to account for human recognition performance.
Analytical Study of the Interplay between Architecture and Predictability
Priel, Avner, Kanter, Ido, Kessler, David A.
We study model feed forward networks as time series predictors in the stationary limit. The focus is on complex, yet non-chaotic, behavior. The main question we address is whether the asymptotic behavior is governed by the architecture, regardless the details of the weights. We find hierarchies among classes of architectures with respect to the attract or dimension of the long term sequence they are capable of generating; larger number of hidden units can attractors. In the case of a perceptron,generate higher dimensional the stationary solution for general weights, and showwe develop that the flow is typically one dimensional.
Globally Optimal On-line Learning Rules
We present a method for determining the globally optimal online learning rule for a soft committee machine under a statistical mechanics framework. This work complements previous results on locally optimal rules, where only the rate of change in generalization the total reduction inerror was considered. We maximize the whole learning process and show howgeneralization error over the resulting rule can significantly outperform the locally optimal rule. 1 Introduction We consider a learning scenario in which a feed-forward neural network model (the an unknown mapping (the teacher), given a set of training examplesstudent) emulates The performance of the student network is typicallyproduced by the teacher. A common form of training is online learning, where training patterns are presented sequentially and independently to the network at each learning step. This form of training can be beneficial in terms of both storage and computation time, especially for large systems.
Reinforcement Learning for Call Admission Control and Routing in Integrated Service Networks
Marbach, Peter, Mihatsch, Oliver, Schulte, Miriam, Tsitsiklis, John N.
Peter Dayan E25-210, MIT Cambridge, MA 02139 We provide a model of the standard watermaze task, and of a more challenging task involving novel platform locations, in which rats exhibit one-trial learning after a few days of training. The model uses hippocampal place cells to support reinforcement learning, and also, in an integrated manner, to build and use allocentric coordinates. 1 INTRODUCTION