Not enough data to create a plot.
Try a different view from the menu above.
Towards Effective Planning Strategies for Dynamic Opinion Networks
In this study, we investigate the under-explored intervention planning aimed at disseminating accurate information within dynamic opinion networks by leveraging learning strategies. Intervention planning involves identifying key nodes (search) and exerting control (e.g., disseminating accurate/official information through the nodes) to mitigate the influence of misinformation. However, as the network size increases, the problem becomes computationally intractable. To address this, we first introduce a ranking algorithm to identify key nodes for disseminating accurate information, which facilitates the training of neural network (NN) classifiers that provide generalized solutions for the search and planning problems. Second, we mitigate the complexity of label generation--which becomes challenging as the network grows--by developing a reinforcement learning (RL)-based centralized dynamic planning framework.
A Synthesized LLM Multi-Agent System with Conceptual Verbal Reinforcement for Enhanced Financial Decision Making
Large language models (LLMs) have shown potential in complex financial tasks, but sequential financial decision-making remains challenging due to the volatile environment and the need for intelligent risk management. While LLM-based agent systems have achieved impressive returns, optimizing multi-source information synthesis and decision-making through timely experience refinement is underexplored.
DeepMath - Deep Sequence Models for Premise Selection
Geoffrey Irving, Christian Szegedy, Alexander A. Alemi, Niklas Een, Francois Chollet, Josef Urban
We study the effectiveness of neural sequence models for premise selection in automated theorem proving, one of the main bottlenecks in the formalization of mathematics. We propose a two stage approach for this task that yields good results for the premise selection task on the Mizar corpus while avoiding the handengineered features of existing state-of-the-art models. To our knowledge, this is the first time deep learning has been applied to theorem proving on a large scale.
Reinforcement Learning Guided Semi-Supervised Learning
In recent years, semi-supervised learning (SSL) has gained significant attention due to its ability to leverage both labeled and unlabeled data to improve model performance, especially when labeled data is scarce. However, most current SSL methods rely on heuristics or predefined rules for generating pseudo-labels and leveraging unlabeled data. They are limited to exploiting loss functions and regularization methods within the standard norm. In this paper, we propose a novel Reinforcement Learning (RL) Guided SSL method, RLGSSL, that formulates SSL as a one-armed bandit problem and deploys an innovative RL loss based on weighted reward to adaptively guide the learning process of the prediction model. RLGSSL incorporates a carefully designed reward function that balances the use of labeled and unlabeled data to enhance generalization performance. A semi-supervised teacher-student framework is further deployed to increase the learning stability. We demonstrate the effectiveness of RLGSSL through extensive experiments on several benchmark datasets and show that our approach achieves consistent superior performance compared to state-of-the-art SSL methods.
Transfer Learning for Diffusion Models
Diffusion models, a specific type of generative model, have achieved unprecedented performance in recent years and consistently produce high-quality synthetic samples. A critical prerequisite for their notable success lies in the presence of a substantial number of training samples, which can be impractical in real-world applications due to high collection costs or associated risks. Consequently, various finetuning and regularization approaches have been proposed to transfer knowledge from existing pre-trained models to specific target domains with limited data. This paper introduces the Transfer Guided Diffusion Process (TGDP), a novel approach distinct from conventional finetuning and regularization methods. We prove that the optimal diffusion model for the target domain integrates pre-trained diffusion models on the source domain with additional guidance from a domain classifier. We further extend TGDP to a conditional version for modeling the joint distribution of data and its corresponding labels, together with two additional regularization terms to enhance the model performance.
Unitary convolutions for learning on graphs and groups
In recent years, the design of specialized machine learning architectures for structured data has received a surge of interest. Of particular interest are architectures for data domains with inherent symmetries, such as permutation-invariance in graphs and sets, translation-invariance in images, and other symmetries that arise from fundamental laws of physics in scientific data.
Aligning LLM Agents by Learning Latent Preference from User Edits
We study interactive learning of LLM-based language agents based on user edits made to the agent's output. In a typical setting such as writing assistants, the user interacts with a language agent to generate a response given a context, and may optionally edit the agent response to personalize it based on their latent preference, in addition to improving the correctness. The edit feedback is naturally generated, making it a suitable candidate for improving the agent's alignment with the user's preference, and for reducing the cost of user edits over time. We propose a learning framework, PRELUDE that infers a description of the user's latent preference based on historic edit data. The inferred user preference descriptions are used to define prompts for generating responses in the future.
SPRINQL: Sub-optimal Demonstrations driven Offline Imitation Learning
We focus on offline imitation learning (IL), which aims to mimic an expert's behavior using demonstrations without any interaction with the environment. One of the main challenges in offline IL is the limited support of expert demonstrations, which typically cover only a small fraction of the state-action space. While it may not be feasible to obtain numerous expert demonstrations, it is often possible to gather a larger set of sub-optimal demonstrations. For example, in treatment optimization problems, there are varying levels of doctor treatments available for different chronic conditions. These range from treatment specialists and experienced general practitioners to less experienced general practitioners.
AED: Adaptable Error Detection for Few-shot Imitation Policy Kuo-Han Hung 1, Pang-Chi Lo1, Chi-Ming Chung 1
We introduce a new task called Adaptable Error Detection (AED), which aims to identify behavior errors in few-shot imitation (FSI) policies based on visual observations in novel environments. The potential to cause serious damage to surrounding areas limits the application of FSI policies in real-world scenarios. Thus, a robust system is necessary to notify operators when FSI policies are inconsistent with the intent of demonstrations. This task introduces three challenges: (1) detecting behavior errors in novel environments, (2) identifying behavior errors that occur without revealing notable changes, and (3) lacking complete temporal information of the rollout due to the necessity of online detection. However, the existing benchmarks cannot support the development of AED because their tasks do not present all these challenges.
Autonomous Driving with Spiking Neural Networks 1
Autonomous driving demands an integrated approach that encompasses perception, prediction, and planning, all while operating under strict energy constraints to enhance scalability and environmental sustainability. We present Spiking Autonomous Driving (SAD), the first unified Spiking Neural Network (SNN) to address the energy challenges faced by autonomous driving systems through its event-driven and energy-efficient nature. SAD is trained end-to-end and consists of three main modules: perception, which processes inputs from multi-view cameras to construct a spatiotemporal bird's eye view; prediction, which utilizes a novel dual-pathway with spiking neurons to forecast future states; and planning, which generates safe trajectories considering predicted occupancy, traffic rules, and ride comfort. Evaluated on the nuScenes dataset, SAD achieves competitive performance in perception, prediction, and planning tasks, while drawing upon the energy efficiency of SNNs. This work highlights the potential of neuromorphic computing to be applied to energy-efficient autonomous driving, a critical step toward sustainable and safety-critical automotive technology. Our code is available at https://github.com/ridgerchu/SAD.