Not enough data to create a plot.
Try a different view from the menu above.
Lower bounds on the robustness to adversarial perturbations
Jonathan Peck, Joris Roels, Bart Goossens, Yvan Saeys
The input-output mappings learned by state-of-the-art neural networks are significantly discontinuous. It is possible to cause a neural network used for image recognition to misclassify its input by applying very specific, hardly perceptible perturbations to the input, called adversarial perturbations. Many hypotheses have been proposed to explain the existence of these peculiar samples as well as several methods to mitigate them, but a proven explanation remains elusive. In this work, we take steps towards a formal characterization of adversarial perturbations by deriving lower bounds on the magnitudes of perturbations necessary to change the classification of neural networks. The proposed bounds can be computed efficiently, requiring time at most linear in the number of parameters and hyperparameters of the model for any given sample. This makes them suitable for use in model selection, when one wishes to find out which of several proposed classifiers is most robust to adversarial perturbations. They may also be used as a basis for developing techniques to increase the robustness of classifiers, since they enjoy the theoretical guarantee that no adversarial perturbation could possibly be any smaller than the quantities provided by the bounds. We experimentally verify the bounds on the MNIST and CIFAR-10 data sets and find no violations. Additionally, the experimental results suggest that very small adversarial perturbations may occur with non-zero probability on natural samples.
Parallel Streaming Wasserstein Barycenters
Matthew Staib, Sebastian Claici, Justin M. Solomon, Stefanie Jegelka
Efficiently aggregating data from different sources is a challenging problem, particularly when samples from each source are distributed differently. These differences can be inherent to the inference task or present for other reasons: sensors in a sensor network may be placed far apart, affecting their individual measurements. Conversely, it is computationally advantageous to split Bayesian inference tasks across subsets of data, but data need not be identically distributed across subsets. One principled way to fuse probability distributions is via the lens of optimal transport: the Wasserstein barycenter is a single distribution that summarizes a collection of input measures while respecting their geometry. However, computing the barycenter scales poorly and requires discretization of all input distributions and the barycenter itself.