Plotting

A Note on Learning Vector Quantization

Neural Information Processing Systems

Vector Quantization is useful for data compression. Competitive Learning which minimizes reconstruction error is an appropriate algorithm for vector quantization of unlabelled data. Vector quantization of labelled data for classification has a different objective, to minimize the number of misclassifications, and a different algorithm is appropriate. We show that a variant of Kohonen's LVQ2.1 algorithm can be seen as a multiclass extension of an algorithm which in a restricted 2 class case can be proven to converge to the Bayes optimal classification boundary. We compare the performance of the LVQ2.1 algorithm to that of a modified version having a decreasing window and normalized step size, on a ten class vowel classification problem.



Visual Motion Computation in Analog VLSI Using Pulses

Neural Information Processing Systems

The real time computation of motion from real images using a single chip with integrated sensors is a hard problem. We present two analog VLSI schemes that use pulse domain neuromorphic circuits to compute motion. Pulses of variable width, rather than graded potentials, represent a natural medium for evaluating temporal relationships.


Unsupervised Discrimination of Clustered Data via Optimization of Binary Information Gain

Neural Information Processing Systems

We present the information-theoretic derivation of a learning algorithm that clusters unlabelled data with linear discriminants. In contrast to methods that try to preserve information about the input patterns, we maximize the information gained from observing the output of robust binary discriminators implemented with sigmoid nodes. We deri ve a local weight adaptation rule via gradient ascent in this objective, demonstrate its dynamics on some simple data sets, relate our approach to previous work and suggest directions in which it may be extended.


Integration of Visual and Somatosensory Information for Preshaping Hand in Grasping Movements

Neural Information Processing Systems

The primate brain must solve two important problems in grasping movements. The first problem concerns the recognition of grasped objects: specifically, how does the brain integrate visual and motor information on a grasped object? The second problem concerns hand shape planning: specifically, how does the brain design the hand configuration suited to the shape of the object and the manipulation task? A neural network model that solves these problems has been developed. The operations of the network are divided into a learning phase and an optimization phase. In the learning phase, internal representations, which depend on the grasped objects and the task, are acquired by integrating visual and somatosensory information. In the optimization phase, the most suitable hand shape for grasping an object is determined by using a relaxation computation of the network.


Interposing an ontogenetic model between Genetic Algorithms and Neural Networks

Neural Information Processing Systems

The relationships between learning, development and evolution in Nature is taken seriously, to suggest a model of the developmental process whereby the genotypes manipulated by the Genetic Algorithm (GA) might be expressed to form phenotypic neural networks (NNet) that then go on to learn. ONTOL is a grammar for generating polynomial NN ets for time-series prediction. Genomes correspond to an ordered sequence of ONTOL productions and define a grammar that is expressed to generate a NNet. The NNet's weights are then modified by learning, and the individual's prediction error is used to determine GA fitness. A new gene doubling operator appears critical to the formation of new genetic alternatives in the preliminary but encouraging results presented.


Analog Cochlear Model for Multiresolution Speech Analysis

Neural Information Processing Systems

The tradeoff between time and frequency resolution is viewed as the fundamental difference between conventional spectrographic analysis and cochlear signal processing for broadband, rapid-changing signals. The model's response exhibits a wavelet-like analysis in the scale domain that preserves good temporal resolution; the frequency of each spectral component in a broadband signal can be accurately determined from the interpeak intervals in the instantaneous firing rates of auditory fibers. Such properties of the cochlear model are demonstrated with natural speech and synthetic complex signals. 1 Introduction As a nonparametric tool, spectrogram, or short-term Fourier transform, is widely used in analyzing non-stationary signals, such speech. Usually a window is applied to the running signal and then the Fourier transform is performed. The specific window applied determines the tradeoff between temporal and spectral resolutions of the analysis, as indicated by the uncertainty principle [1].


Analogy-- Watershed or Waterloo? Structural alignment and the development of connectionist models of analogy

Neural Information Processing Systems

Neural network models have been criticized for their inability to make use of compositional representations. In this paper, we describe a series of psychological phenomena that demonstrate the role of structured representations in cognition. These findings suggest that people compare relational representations via a process of structural alignment. This process will have to be captured by any model of cognition, symbolic or subsymbolic.


A Method for Learning From Hints

Neural Information Processing Systems

We address the problem of learning an unknown function by pu tting together several pieces of information (hints) that we know about the function. We introduce a method that generalizes learning from examples to learning from hints. A canonical representation of hints is defined and illustrated for new types of hints. All the hints are represented to the learning process by examples, and examples of the function are treated on equal footing with the rest of the hints. During learning, examples from different hints are selected for processing according to a given schedule. We present two types of schedules; fixed schedules that specify the relative emphasis of each hint, and adaptive schedules that are based on how well each hint has been learned so far. Our learning method is compatible with any descent technique that we may choose to use.


Object-Based Analog VLSI Vision Circuits

Neural Information Processing Systems

We describe two successfully working, analog VLSI vision circuits that move beyond pixel-based early vision algorithms. One circuit, implementing the dynamic wires model, provides for dedicated lines of communication among groups of pixels that share a common property. The chip uses the dynamic wires model to compute the arclength of visual contours. Another circuit labels all points inside a given contour with one voltage and all other with another voltage. Its behavior is very robust, since small breaks in contours are automatically sealed, providing for Figure-Ground segregation in a noisy environment. Both chips are implemented using networks of resistors and switches and represent a step towards object level processing since a single voltage value encodes the property of an ensemble of pixels.