Not enough data to create a plot.
Try a different view from the menu above.
IF-Font: Ideographic Description Sequence-Following Font Generation
Few-shot font generation (FFG) aims to learn the target style from a limited number of reference glyphs and generate the remaining glyphs in the target font. Previous works focus on disentangling the content and style features of glyphs, combining the content features of the source glyph with the style features of the reference glyph to generate new glyphs. However, the disentanglement is challenging due to the complexity of glyphs, often resulting in glyphs that are influenced by the style of the source glyph and prone to artifacts. We propose IF-Font, a novel paradigm which incorporates Ideographic Description Sequence (IDS) instead of the source glyph to control the semantics of generated glyphs. To achieve this, we quantize the reference glyphs into tokens, and model the token distribution of target glyphs using corresponding IDS and reference tokens. The proposed method excels in synthesizing glyphs with neat and correct strokes, and enables the creation of new glyphs based on provided IDS. Extensive experiments demonstrate that our method greatly outperforms state-of-the-art methods in both one-shot and few-shot settings, particularly when the target styles differ significantly from the training font styles.
Learning Interaction-aware 3D Gaussian Splatting for One-shot Hand Avatars
In this paper, we propose to create animatable avatars for interacting hands with 3D Gaussian Splatting (GS) and single-image inputs. Existing GS-based methods designed for single subjects often yield unsatisfactory results due to limited input views, various hand poses, and occlusions. To address these challenges, we introduce a novel two-stage interaction-aware GS framework that exploits cross-subject hand priors and refines 3D Gaussians in interacting areas. Particularly, to handle hand variations, we disentangle the 3D presentation of hands into optimization-based identity maps and learning-based latent geometric features and neural texture maps. Learning-based features are captured by trained networks to provide reliable priors for poses, shapes, and textures, while optimization-based identity maps enable efficient one-shot fitting of out-ofdistribution hands. Furthermore, we devise an interaction-aware attention module and a self-adaptive Gaussian refinement module. These modules enhance image rendering quality in areas with intra-and inter-hand interactions, overcoming the limitations of existing GS-based methods. Our proposed method is validated via extensive experiments on the large-scale InterHand2.6M dataset, and it significantly improves the state-of-the-art performance in image quality.
AttrSeg: Open-Vocabulary Semantic Segmentation via Attribute Decomposition-Aggregation
Open-vocabulary semantic segmentation is a challenging task that requires segmenting novel object categories at inference time. Recent works explore vision-language pre-training to handle this task, but suffer from unrealistic assumptions in practical scenarios, i.e., low-quality textual category names. For example, this paradigm assumes that new textual categories will be accurately and completely provided, and exist in lexicons during pre-training. However, exceptions often happen when meet with ambiguity for brief or incomplete names, new words that are not present in the pre-trained lexicons, and difficult-to-describe categories for users. To address these issues, this work proposes a novel attribute decomposition-aggregation framework, AttrSeg, inspired by human cognition in understanding new concepts.
A Implementation Details & Hyperparameters
Table 2: Hyperparameters used for different models. In Table 2, we list out the different hyperparameter settings for our experiments. The exact reproduction details and scripts for the experiments are available with code. Grid search was performed on batch size, learning rate and maximum number of updates to find the best hyperparameter configuration. While batch size and learning rate differ based on the model as shown in Table A, we found 22000 updates as best performing.
The Hateful Memes Challenge: Detecting Hate Speech in Multimodal Memes
This work proposes a new challenge set for multimodal classification, focusing on detecting hate speech in multimodal memes. It is constructed such that unimodal models struggle and only multimodal models can succeed: difficult examples ("benign confounders") are added to the dataset to make it hard to rely on unimodal signals. The task requires subtle reasoning, yet is straightforward to evaluate as a binary classification problem. We provide baseline performance numbers for unimodal models, as well as for multimodal models with various degrees of sophistication. We find that state-of-the-art methods perform poorly compared to humans, illustrating the difficulty of the task and highlighting the challenge that this important problem poses to the community.
A Full-duplex Speech Dialogue Scheme Based On Large Language Model
We present a generative dialogue system capable of operating in a full-duplex manner, allowing for seamless interaction. It is based on a large language model (LLM) carefully aligned to be aware of a perception module, a motor function module, and the concept of a simple finite state machine (called neural FSM) with two states. The perception and motor function modules operate in tandem, allowing the system to simultaneously speak and listen to the user. The LLM generates textual tokens for inquiry responses and makes autonomous decisions to start responding to, wait for, or interrupt the user by emitting control tokens to the neural FSM. All these tasks of the LLM are carried out as next token prediction on a serialized view of the dialogue in real-time. In automatic quality evaluations simulating real-life interaction, the proposed system reduces the average conversation response latency by more than 3 folds compared with LLM-based half-duplex dialogue systems while responding within less than 500 milliseconds in more than 50% of evaluated interactions. Running a LLM with only 8 billion parameters, our system exhibits a 8% higher interruption precision rate than the best available commercial LLM for voice-based dialogue.
Center Smoothing: Certified Robustness for Networks with Structured Outputs
Let, y be a point in that intersection. Given z = ˆf(x), define a random variable Q = d(z, f(X)), where is X x + P. For m i.i.d. For functions with high-dimensional outputs, like high-resolution images, it might be difficult to compute the minimum enclosing ball (MEB) for a large number of points. It does not allow us to sample the n points in batches as is possible for the certification step. The rest of the procedure remains the same as algorithm 1.
RLlib Flow: Distributed Reinforcement Learning is a Dataflow Problem
Researchers and practitioners in the field of reinforcement learning (RL) frequently leverage parallel computation, which has led to a plethora of new algorithms and systems in the last few years. In this paper, we re-examine the challenges posed by distributed RL and try to view it through the lens of an old idea: distributed dataflow. We show that viewing RL as a dataflow problem leads to highly composable and performant implementations. We propose RLlib Flow, a hybrid actor-dataflow programming model for distributed RL, and validate its practicality by porting the full suite of algorithms in RLlib, a widely adopted distributed RL library. Concretely, RLlib Flow provides 2-9 code savings in real production code and enables the composition of multi-agent algorithms not possible by end users before. The open-source code is available as part of RLlib at https://github.com/
CV-VAE: A Compatible Video VAE for Latent Generative Video Models
Spatio-temporal compression of videos, utilizing networks such as Variational Autoencoders (VAE), plays a crucial role in OpenAI's SORA and numerous other video generative models. For instance, many LLM-like video models learn the distribution of discrete tokens derived from 3D VAEs within the VQVAE framework, while most diffusion-based video models capture the distribution of continuous latent extracted by 2D VAEs without quantization. The temporal compression is simply realized by uniform frame sampling which results in unsmooth motion between consecutive frames. Currently, there lacks of a commonly used continuous video (3D) VAE for latent diffusion-based video models in the research community. Moreover, since current diffusion-based approaches are often implemented using pre-trained text-to-image (T2I) models, directly training a video VAE without considering the compatibility with existing T2I models will result in a latent space gap between them, which will take huge computational resources for training to bridge the gap even with the T2I models as initialization.
Noisy Recurrent Neural Networks
We provide a general framework for studying recurrent neural networks (RNNs) trained by injecting noise into hidden states. Specifically, we consider RNNs that can be viewed as discretizations of stochastic differential equations driven by input data. This framework allows us to study the implicit regularization effect of general noise injection schemes by deriving an approximate explicit regularizer in the small noise regime. We find that, under reasonable assumptions, this implicit regularization promotes flatter minima; it biases towards models with more stable dynamics; and, in classification tasks, it favors models with larger classification margin. Sufficient conditions for global stability are obtained, highlighting the phenomenon of stochastic stabilization, where noise injection can improve stability during training. Our theory is supported by empirical results which demonstrate that the RNNs have improved robustness with respect to various input perturbations.