Not enough data to create a plot.
Try a different view from the menu above.
Distributed Distributionally Robust Optimization with Non-Convex Objectives
Distributionally Robust Optimization (DRO), which aims to find an optimal decision that minimizes the worst case cost over the ambiguity set of probability distribution, has been widely applied in diverse applications, e.g., network behavior analysis, risk management, etc. However, existing DRO techniques face three key challenges: 1) how to deal with the asynchronous updating in a distributed environment; 2) how to leverage the prior distribution effectively; 3) how to properly adjust the degree of robustness according to different scenarios. To this end, we propose an asynchronous distributed algorithm, named Asynchronous Single-looP alternatIve gRadient projEction (ASPIRE) algorithm with the itErative Active SEt method (EASE) to tackle the distributed distributionally robust optimization (DDRO) problem. Furthermore, a new uncertainty set, i.e., constrained D-norm uncertainty set, is developed to effectively leverage the prior distribution and flexibly control the degree of robustness. Finally, our theoretical analysis elucidates that the proposed algorithm is guaranteed to converge and the iteration complexity is also analyzed. Extensive empirical studies on real-world datasets demonstrate that the proposed method can not only achieve fast convergence, and remain robust against data heterogeneity as well as malicious attacks, but also tradeoff robustness with performance.
Distributed Distributionally Robust Optimization with Non-Convex Objectives
Distributionally Robust Optimization (DRO), which aims to find an optimal decision that minimizes the worst case cost over the ambiguity set of probability distribution, has been widely applied in diverse applications, e.g., network behavior analysis, risk management, etc. However, existing DRO techniques face three key challenges: 1) how to deal with the asynchronous updating in a distributed environment; 2) how to leverage the prior distribution effectively; 3) how to properly adjust the degree of robustness according to different scenarios. To this end, we propose an asynchronous distributed algorithm, named Asynchronous Single-looP alternatIve gRadient projEction (ASPIRE) algorithm with the itErative Active SEt method (EASE) to tackle the distributed distributionally robust optimization (DDRO) problem. Furthermore, a new uncertainty set, i.e., constrained D-norm uncertainty set, is developed to effectively leverage the prior distribution and flexibly control the degree of robustness. Finally, our theoretical analysis elucidates that the proposed algorithm is guaranteed to converge and the iteration complexity is also analyzed. Extensive empirical studies on real-world datasets demonstrate that the proposed method can not only achieve fast convergence, and remain robust against data heterogeneity as well as malicious attacks, but also tradeoff robustness with performance.
Defensive Unlearning with Adversarial Training for Robust Concept Erasure in Diffusion Models
The techniques of machine unlearning, also known as concept erasing, have been developed to address these risks. However, these techniques remain vulnerable to adversarial prompt attacks, which can prompt DMs post-unlearning to regenerate undesired images containing concepts (such as nudity) meant to be erased. This work aims to enhance the robustness of concept erasing by integrating the principle of adversarial training (AT) into machine unlearning, resulting in the robust unlearning framework referred to as AdvUnlearn. However, achieving this effectively and efficiently is highly nontrivial. First, we find that a straightforward implementation of AT compromises DMs' image generation quality post-unlearning. To address this, we develop a utility-retaining regularization on an additional retain set, optimizing the trade-off between concept erasure robustness and model utility in AdvUnlearn.
Uncovering the Topology of Time-Varying fMRI Data using Cubical Persistence
Functional magnetic resonance imaging (fMRI) is a crucial technology for gaining insights into cognitive processes in humans. Data amassed from fMRI measurements result in volumetric data sets that vary over time. However, analysing such data presents a challenge due to the large degree of noise and person-to-person variation in how information is represented in the brain. To address this challenge, we present a novel topological approach that encodes each time point in an fMRI data set as a persistence diagram of topological features, i.e. high-dimensional voids present in the data. This representation naturally does not rely on voxel-by-voxel correspondence and is robust to noise. We show that these time-varying persistence diagrams can be clustered to find meaningful groupings between participants, and that they are also useful in studying within-subject brain state trajectories of subjects performing a particular task. Here, we apply both clustering and trajectory analysis techniques to a group of participants watching the movie'Partly Cloudy'. We observe significant differences in both brain state trajectories and overall topological activity between adults and children watching the same movie.
SpGesture: Source-Free Domain-adaptive sEMG-based Gesture Recognition with Jaccard Attentive Spiking Neural Network
Surface electromyography (sEMG) based gesture recognition offers a natural and intuitive interaction modality for wearable devices. Despite significant advancements in sEMG-based gesture recognition models, existing methods often suffer from high computational latency and increased energy consumption. Additionally, the inherent instability of sEMG signals, combined with their sensitivity to distribution shifts in real-world settings, compromises model robustness. To tackle these challenges, we propose a novel SpGesture framework based on Spiking Neural Networks, which possesses several unique merits compared with existing methods: (1) Robustness: By utilizing membrane potential as a memory list, we pioneer the introduction of Source-Free Domain Adaptation into SNN for the first time. This enables SpGesture to mitigate the accuracy degradation caused by distribution shifts.
Appendix 3 Differentiable ILP Loss 3.2 A Solver-free Framework
Figure on the left shows 4 ground truth constraints that need to be learnt. Blue dots are the only feasible integral points w.r.t. the 4 constraints. Shaded area containing only the dot with green border is the feasible region after we add the cost constraint (dashed line). Figure on the right shows an intermediate scenario while learning. Figure 1a shows the ground truth ILP.