Not enough data to create a plot.
Try a different view from the menu above.
Event-3DGS: Event-based 3D Reconstruction Using 3D Gaussian Splatting
Event cameras, offering high temporal resolution and high dynamic range, have brought a new perspective to addressing 3D reconstruction challenges in fastmotion and low-light scenarios. Most methods use the Neural Radiance Field (NeRF) for event-based photorealistic 3D reconstruction. However, these NeRF methods suffer from time-consuming training and inference, as well as limited scene-editing capabilities of implicit representations. To address these problems, we propose Event-3DGS, the first event-based reconstruction using 3D Gaussian splatting (3DGS) for synthesizing novel views freely from event streams. Technically, we first propose an event-based 3DGS framework that directly processes event data and reconstructs 3D scenes by simultaneously optimizing scenario and sensor parameters. Then, we present a high-pass filter-based photovoltage estimation module, which effectively reduces noise in event data to improve the robustness of our method in real-world scenarios.
Generalizable One-shot 3D Neural Head Avatar
We present a method that reconstructs and animates a 3D head avatar from a singleview portrait image. Existing methods either involve time-consuming optimization for a specific person with multiple images, or they struggle to synthesize intricate appearance details beyond the facial region. To address these limitations, we propose a framework that not only generalizes to unseen identities based on a single-view image without requiring person-specific optimization, but also captures characteristic details within and beyond the face area (e.g.
On the Strong Correlation Between Model Invariance and Generalization
Generalization and invariance are two essential properties of machine learning models. Generalization captures a model's ability to classify unseen data while invariance measures the consistency of model predictions on transformed data. Existing research suggests a positive relationship: a model generalizing well should be invariant to certain visual factors. Building on this qualitative implication we make two contributions. First, we introduce effective invariance (EI), a simple and reasonable measure of model invariance which does not rely on image labels.
A Theoretical Perspective for Speculative Decoding Algorithm
Transformer-based autoregressive sampling has been the major bottleneck for slowing down large language model inferences. One effective way to accelerate inference is Speculative Decoding, which employs a small model to sample a sequence of draft tokens and a large model to validate. Given its empirical effectiveness, the theoretical understanding of Speculative Decoding is falling behind. This paper tackles this gap by conceptualizing the decoding problem via markov chain abstraction and studying the key properties, output quality and inference acceleration, from a theoretical perspective. Our analysis covers the theoretical limits of speculative decoding, batch algorithms, and output quality-inference acceleration tradeoffs. Our results reveal the fundamental connections between different components of LLMs via total variation distances and show how they jointly affect the efficiency of decoding algorithms.
Connecting Pre-trained Language Models and Downstream Tasks via Properties of Representations
Recently, researchers have found that representations learned by large-scale pretrained language models are useful in various downstream tasks. However, there is little theoretical understanding of how pre-training performance is related to downstream task performance. In this paper, we analyze how this performance transfer depends on the properties of the downstream task and the structure of the representations. We consider a log-linear model where a word can be predicted from its context through a network having softmax as its last layer. We show that even if the downstream task is highly structured and depends on a simple function of the hidden representation, there are still cases when a low pre-training loss cannot guarantee good performance on the downstream task. On the other hand, we propose and empirically validate the existence of an "anchor vector" in the representation space, and show that this assumption, together with properties of the downstream task, guarantees performance transfer.
Connecting Pre-trained Language Models and Downstream Tasks via Properties of Representations
Recently, researchers have found that representations learned by large-scale pretrained language models are useful in various downstream tasks. However, there is little theoretical understanding of how pre-training performance is related to downstream task performance. In this paper, we analyze how this performance transfer depends on the properties of the downstream task and the structure of the representations. We consider a log-linear model where a word can be predicted from its context through a network having softmax as its last layer. We show that even if the downstream task is highly structured and depends on a simple function of the hidden representation, there are still cases when a low pre-training loss cannot guarantee good performance on the downstream task. On the other hand, we propose and empirically validate the existence of an "anchor vector" in the representation space, and show that this assumption, together with properties of the downstream task, guarantees performance transfer.
UV-free Texture Generation with Denoising and Geodesic Heat Diffusions
Seams, distortions, wasted UVspace, vertex-duplication, and varying resolution over the surface are the most prominent issues of the standard UV-based texturing of meshes. These issues are particularly acute when automatic UV-unwrapping techniques are used. For this reason, instead of generating textures in automatically generated UV-planes like most state-of-the-art methods, we propose to represent textures as coloured point-clouds whose colours are generated by a denoising diffusion probabilistic model constrained to operate on the surface of 3D objects. Our sampling and resolution agnostic generative model heavily relies on heat diffusion over the surface of the meshes for spatial communication between points. To enable processing of arbitrarily sampled point-cloud textures and ensure longdistance texture consistency we introduce a fast re-sampling of the mesh spectral properties used during the heat diffusion and introduce a novel heat-diffusionbased self-attention mechanism. Our code and pre-trained models are available at github.com/simofoti/UV3-TeD.