Plotting

Topic-Conversation Relevance (TCR) Dataset and Benchmarks Yaran Fan Jamie Pool Microsoft

Neural Information Processing Systems

Workplace meetings are vital to organizational collaboration, yet a large percentage of meetings are rated as ineffective [1]. To help improve meeting effectiveness by understanding if the conversation is on topic, we create a comprehensive Topic-Conversation Relevance (TCR) dataset that covers a variety of domains and meeting styles. The TCR dataset includes 1,500 unique meetings, 22 million words in transcripts, and over 15,000 meeting topics, sourced from both newly collected Speech Interruption Meeting (SIM) data and existing public datasets. Along with the text data, we also open source scripts to generate synthetic meetings or create augmented meetings from the TCR dataset to enhance data diversity.


One Ref: Unified One-tower Expression Grounding and Segmentation with Mask Referring Modeling

Neural Information Processing Systems

Constrained by the separate encoding of vision and language, existing grounding and referring segmentation works heavily rely on bulky Transformer-based fusion en-/decoders and a variety of early-stage interaction technologies. Simultaneously, the current mask visual language modeling (MVLM) fails to capture the nuanced referential relationship between image-text in referring tasks. In this paper, we propose OneRef, a minimalist referring framework built on the modality-shared one-tower transformer that unifies the visual and linguistic feature spaces. To modeling the referential relationship, we introduce a novel MVLM paradigm called Mask Referring Modeling (MRefM), which encompasses both referring-aware mask image modeling and referring-aware mask language modeling. Both modules not only reconstruct modality-related content but also cross-modal referring content. Within MRefM, we propose a referring-aware dynamic image masking strategy that is aware of the referred region rather than relying on fixed ratios or generic random masking schemes. By leveraging the unified visual language feature space and incorporating MRefM's ability to model the referential relations, our approach enables direct regression of the referring results without resorting to various complex techniques. Our method consistently surpasses existing approaches and achieves SoTA performance on both grounding and segmentation tasks, providing valuable insights for future research.


Closed-Loop Visuomotor Control with Generative Expectation for Robotic Manipulation Li Chen

Neural Information Processing Systems

Despite significant progress in robotics and embodied AI in recent years, deploying robots for long-horizon tasks remains a great challenge. Majority of prior arts adhere to an open-loop philosophy and lack real-time feedback, leading to error accumulation and undesirable robustness. A handful of approaches have endeavored to establish feedback mechanisms leveraging pixel-level differences or pre-trained visual representations, yet their efficacy and adaptability have been found to be constrained. Inspired by classic closed-loop control systems, we propose CLOVER, a closed-loop visuomotor control framework that incorporates feedback mechanisms to improve adaptive robotic control. CLOVER consists of a text-conditioned video diffusion model for generating visual plans as reference inputs, a measurable embedding space for accurate error quantification, and a feedback-driven controller that refines actions from feedback and initiates replans as needed. Our framework exhibits notable advancement in real-world robotic tasks and achieves state-of-the-art on CALVIN benchmark, improving by 8% over previous open-loop counterparts.


Scalable Constrained Policy Optimization for Safe Multi-agent Reinforcement Learning

Neural Information Processing Systems

A challenging problem in seeking to bring multi-agent reinforcement learning (MARL) techniques into real-world applications, such as autonomous driving and drone swarms, is how to control multiple agents safely and cooperatively to accomplish tasks.



Learning to Reason Iteratively and Parallelly for Complex Visual Reasoning Scenarios Debaditya Roy 2 Basura Fernando 2,3 Cheston Tan

Neural Information Processing Systems

Complex visual reasoning and question answering (VQA) is a challenging task that requires compositional multi-step processing and higher-level reasoning capabilities beyond the immediate recognition and localization of objects and events. Here, we introduce a fully neural Iterative and Parallel Reasoning Mechanism (IPRM) that combines two distinct forms of computation - iterative and parallel - to better address complex VQA scenarios. Specifically, IPRM's "iterative" computation facilitates compositional step-by-step reasoning for scenarios wherein individual operations need to be computed, stored, and recalled dynamically (e.g. when computing the query "determine the color of pen to the left of the child in red t-shirt sitting at the white table"). Meanwhile, its "parallel" computation allows for the simultaneous exploration of different reasoning paths and benefits more robust and efficient execution of operations that are mutually independent (e.g. when counting individual colors for the query: "determine the maximum occurring color amongst all t-shirts"). We design IPRM as a lightweight and fully-differentiable neural module that can be conveniently applied to both transformer and non-transformer vision-language backbones. It notably outperforms prior task-specific methods and transformer-based attention modules across various image and video VQA benchmarks testing distinct complex reasoning capabilities such as compositional spatiotemporal reasoning (AGQA), situational reasoning (STAR), multi-hop reasoning generalization (CLEVR-Humans) and causal event linking (CLEVRER-Humans). Further, IPRM's internal computations can be visualized across reasoning steps, aiding interpretability and diagnosis of its errors.


Prompt-Agnostic Adversarial Perturbation for Customized Diffusion Models

Neural Information Processing Systems

Diffusion models have revolutionized customized text-to-image generation, allowing for efficient synthesis of photos from personal data with textual descriptions. However, these advancements bring forth risks including privacy breaches and unauthorized replication of artworks. Previous researches primarily center around using "prompt-specific methods" to generate adversarial examples to protect personal images, yet the effectiveness of existing methods is hindered by constrained adaptability to different prompts. In this paper, we introduce a Prompt-Agnostic Adversarial Perturbation (PAP) method for customized diffusion models. PAP first models the prompt distribution using a Laplace Approximation, and then produces prompt-agnostic perturbations by maximizing a disturbance expectation based on the modeled distribution. This approach effectively tackles the promptagnostic attacks, leading to improved defense stability. Extensive experiments in face privacy and artistic style protection, demonstrate the superior generalization of PAP in comparison to existing techniques. Our code will be available at https://github.com/vancyland/PAP.


X-Ray: A Sequential 3D Representation For Generation Tao Hu Wenhang Ge2

Neural Information Processing Systems

We introduce X-Ray, a novel 3D sequential representation inspired by the penetrability of x-ray scans. X-Ray transforms a 3D object into a series of surface frames at different layers, making it suitable for generating 3D models from images. Our method utilizes ray casting from the camera center to capture geometric and textured details, including depth, normal, and color, across all intersected surfaces. This process efficiently condenses the whole 3D object into a multiframe video format, motivating the utilization of a network architecture similar to those in video diffusion models. This design ensures an efficient 3D representation by focusing solely on surface information. Also, we propose a two-stage pipeline to generate 3D objects from X-Ray Diffusion Model and Upsampler.


Towards Reliable Model Selection for Unsupervised Domain Adaptation: An Empirical Study and A Certified Baseline Mi Luo 3

Neural Information Processing Systems

Selecting appropriate hyperparameters is crucial for unlocking the full potential of advanced unsupervised domain adaptation (UDA) methods in unlabeled target domains. Although this challenge remains under-explored, it has recently garnered increasing attention with the proposals of various model selection methods. Reliable model selection should maintain performance across diverse UDA methods and scenarios, especially avoiding highly risky worst-case selections--selecting the model or hyperparameter with the worst performance in the pool. Are existing model selection methods reliable and versatile enough for different UDA tasks? In this paper, we provide a comprehensive empirical study involving 8 existing model selection approaches to answer this question.