Not enough data to create a plot.
Try a different view from the menu above.
Context-Aware Testing: A New Paradigm for Model Testing with Large Language Models
The predominant de facto paradigm of testing ML models relies on either using only held-out data to compute aggregate evaluation metrics or by assessing the performance on different subgroups. However, such data-only testing methods operate under the restrictive assumption that the available empirical data is the sole input for testing ML models, disregarding valuable contextual information that could guide model testing. In this paper, we challenge the go-to approach of data-only testing and introduce context-aware testing (CAT) which uses context as an inductive bias to guide the search for meaningful model failures. We instantiate the first CAT system, SMART Testing, which employs large language models to hypothesize relevant and likely failures, which are evaluated on data using a selffalsification mechanism. Through empirical evaluations in diverse settings, we show that SMART automatically identifies more relevant and impactful failures than alternatives, demonstrating the potential of CAT as a testing paradigm.
Recurrent Registration Neural Networks for Deformable Image Registration
Robin Sandkรผhler, Simon Andermatt, Grzegorz Bauman, Sylvia Nyilas, Christoph Jud, Philippe C. Cattin
Parametric spatial transformation models have been successfully applied to image registration tasks. In such models, the transformation of interest is parameterized by a fixed set of basis functions as for example B-splines. Each basis function is located on a fixed regular grid position among the image domain because the transformation of interest is not known in advance. As a consequence, not all basis functions will necessarily contribute to the final transformation which results in a non-compact representation of the transformation.
Stochastic Optimal Control Matching
Stochastic optimal control, which has the goal of driving the behavior of noisy systems, is broadly applicable in science, engineering and artificial intelligence. Our work introduces Stochastic Optimal Control Matching (SOCM), a novel Iterative Diffusion Optimization (IDO) technique for stochastic optimal control that stems from the same philosophy as the conditional score matching loss for diffusion models. That is, the control is learned via a least squares problem by trying to fit a matching vector field. The training loss, which is closely connected to the cross-entropy loss, is optimized with respect to both the control function and a family of reparameterization matrices which appear in the matching vector field. The optimization with respect to the reparameterization matrices aims at minimizing the variance of the matching vector field. Experimentally, our algorithm achieves lower error than all the existing IDO techniques for stochastic optimal control for three out of four control problems, in some cases by an order of magnitude. The key idea underlying SOCM is the path-wise reparameterization trick, a novel technique that may be of independent interest.
Figure 6: The designed prompt of automatic evaluation for Task 3
Give you a sentence or question that contains Give you a sentence or question that contains some irrationality or humor. Give you four some irrationality or humor. You need to choose options, you need to choose the one that best a type from the "candidate types" that best fits Figure 4: Our designed prompts without the Chain-of-Thought idea. Task 3(a) is for the texts that are not expressed in the form of inquiries. Task 3(b) is for inquiries.
When LLMs Meet Cunning Texts: A Fallacy Understanding Benchmark for Large Language Models Yinghui Li
Recently, Large Language Models (LLMs) make remarkable evolutions in language understanding and generation. Following this, various benchmarks for measuring all kinds of capabilities of LLMs have sprung up. In this paper, we challenge the reasoning and understanding abilities of LLMs by proposing a FaLlacy Understanding Benchmark (FLUB) containing cunning texts that are easy for humans to understand but difficult for models to grasp. Specifically, the cunning texts that FLUB focuses on mainly consist of the tricky, humorous, and misleading texts collected from the real internet environment. And we design three tasks with increasing difficulty in the FLUB benchmark to evaluate the fallacy understanding ability of LLMs. Based on FLUB, we investigate the performance of multiple representative and advanced LLMs, reflecting our FLUB is challenging and worthy of more future study. Interesting discoveries and valuable insights are achieved in our extensive experiments and detailed analyses. We hope that our benchmark can encourage the community to improve LLMs' ability to understand fallacies. Our data and codes are available at https://github.com/THUKElab/FLUB.
A Tensorized Transformer for Language Modeling
Xindian Ma, Peng Zhang, Shuai Zhang, Nan Duan, Yuexian Hou, Ming Zhou, Dawei Song
Latest development of neural models has connected the encoder and decoder through a self-attention mechanism. In particular, Transformer, which is solely based on self-attention, has led to breakthroughs in Natural Language Processing (NLP) tasks. However, the multi-head attention mechanism, as a key component of Transformer, limits the effective deployment of the model to a resource-limited setting. In this paper, based on the ideas of tensor decomposition and parameters sharing, we propose a novel self-attention model (namely Multi-linear attention) with Block-Term Tensor Decomposition (BTD). We test and verify the proposed attention method on three language modeling tasks (i.e., PTB, WikiText-103 and Onebillion) and a neural machine translation task (i.e., WMT-2016 English-German). Multi-linear attention can not only largely compress the model parameters but also obtain performance improvements, compared with a number of language modeling approaches, such as Transformer, Transformer-XL, and Transformer with tensor train decomposition.
A Datasheets for SRFUND
A.1 Motivation For what purpose was the dataset created? The purpose of creating SRFUND dataset is to advance the development of form understanding and structured reconstruction tasks by covering forms of various layouts and languages. Although some benchmarks datasets [16, 17, 33, 37, 41, 44] have been established, none of them have established the global and hierarchical structural dependencies that consider all elements at different granularity, including words, text lines, and entities within the forms. To enhance the applicability of form understanding tasks in hierarchical structure recovery, we introduce the SRFUND, a multilingual document structure reconstruction dataset. To the best of our knowledge, this is the first benchmark in form understanding that integrates multi-level structure reconstruction, spanning from words to the global structure of forms, and we believe that the SRFUND dataset will significantly promote the development of form understanding and structured reconstruction. Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g., company, institution, organization)?
SRFUND: A Multi-Granularity Hierarchical Structure Reconstruction Benchmark in Form Understanding Yan Wang
Accurate identification and organizing of textual content is crucial for the automation of document processing in the field of form understanding. Existing datasets, such as FUNSD and XFUND, support entity classification and relationship prediction tasks but are typically limited to local and entity-level annotations. This limitation overlooks the hierarchically structured representation of documents, constraining a comprehensive understanding of complex forms. To address this issue, we present the SRFUND, a hierarchically structured multi-task form understanding benchmark. SRFUND provides refined annotations on top of the original FUNSD and XFUND datasets, encompassing five tasks: (1) word to text-line merging, (2) text-line to entity merging, (3) entity category classification, (4) item table localization, and (5) entity-based full-document hierarchical structure recovery. We meticulously supplemented the original dataset with missing annotations at various levels of granularity and added detailed annotations for multi-item table regions within the forms. Additionally, we introduce global hierarchical structure dependencies for entity relation prediction tasks, surpassing traditional local key-value associations. The SRFUND dataset includes eight languages including English, Chinese, Japanese, German, French, Spanish, Italian, and Portuguese, making it a powerful tool for understanding cross-lingual forms. Extensive experimental results demonstrate that the SRFUND dataset presents new challenges and significant opportunities in handling diverse layouts and global hierarchical structures of forms, thus providing deep insights into the field of form understanding.
Prediction with Action: Visual Policy Learning via Joint Denoising Process
Diffusion models have demonstrated remarkable capabilities in image generation tasks, including image editing and video creation, representing a good understanding of the physical world. On the other line, diffusion models have also shown promise in robotic control tasks by denoising actions, known as diffusion policy. Although the diffusion generative model and diffusion policy exhibit distinct capabilities--image prediction and robotic action, respectively--they technically follow a similar denoising process. In robotic tasks, the ability to predict future images and generate actions is highly correlated since they share the same underlying dynamics of the physical world. Building on this insight, we introduce PAD, a novel visual policy learning framework that unifies image Prediction and robot Action within a joint Denoising process. Specifically, PAD utilizes Diffusion Transformers (DiT) to seamlessly integrate images and robot states, enabling the simultaneous prediction of future images and robot actions. Additionally, PAD supports co-training on both robotic demonstrations and large-scale video datasets and can be easily extended to other robotic modalities, such as depth images. PAD outperforms previous methods, achieving a significant 26.3% relative improvement on the full Metaworld benchmark, by utilizing a single text-conditioned visual policy within a data-efficient imitation learning setting. Furthermore, PAD demonstrates superior generalization to unseen tasks in real-world robot manipulation settings with 28.0% success rate increase compared to the strongest baseline.