Plotting

The Cells Out of Sample (COOS) dataset and benchmarks for measuring out-of-sample generalization of image classifiers

Neural Information Processing Systems

Understanding if classifiers generalize to out-of-sample datasets is a central problem in machine learning. Microscopy images provide a standardized way to measure the generalization capacity of image classifiers, as we can image the same classes of objects under increasingly divergent, but controlled factors of variation. We created a public dataset of 132,209 images of mouse cells, COOS-7 (Cells Out Of Sample 7-Class). COOS-7 provides a classification setting where four test datasets have increasing degrees of covariate shift: some images are random subsets of the training data, while others are from experiments reproduced months later and imaged by different instruments. We benchmarked a range of classification models using different representations, including transferred neural network features, end-to-end classification with a supervised deep CNN, and features from a self-supervised CNN. While most classifiers perform well on test datasets similar to the training dataset, all classifiers failed to generalize their performance to datasets with greater covariate shifts. These baselines highlight the challenges of covariate shifts in image data, and establish metrics for improving the generalization capacity of image classifiers.



NeurIPS24_QuadMamba (64).pdf

Neural Information Processing Systems

Recent advancements in State Space Models, notably Mamba, have demonstrated superior performance over the dominant Transformer models, particularly in reducing the computational complexity from quadratic to linear. Yet, difficulties in adapting Mamba from language to vision tasks arise due to the distinct characteristics of visual data, such as the spatial locality and adjacency within images and large variations in information granularity across visual tokens. Existing vision Mamba approaches either flatten tokens into sequences in a raster scan fashion, which breaks the local adjacency of images, or manually partition tokens into windows, which limits their long-range modeling and generalization capabilities. To address these limitations, we present a new vision Mamba model, coined QuadMamba, that effectively captures local dependencies of varying granularities via quadtree-based image partition and scan. Concretely, our lightweight quadtree-based scan module learns to preserve the 2D locality of spatial regions within learned window quadrants. The module estimates the locality score of each token from their features, before adaptively partitioning tokens into window quadrants. An omnidirectional window shifting scheme is also introduced to capture more intact and informative features across different local regions. To make the discretized quadtree partition end-to-end trainable, we further devise a sequence masking strategy based on Gumbel-Softmax and its straight-through gradient estimator. Extensive experiments demonstrate that QuadMamba achieves state-of-the-art performance in various vision tasks, including image classification, object detection, instance segmentation, and semantic segmentation.


Oracle-Efficient Reinforcement Learning for Max Value Ensembles

Neural Information Processing Systems

Reinforcement learning (RL) in large or infinite state spaces is notoriously challenging, both theoretically (where worst-case sample and computational complexities must scale with state space cardinality) and experimentally (where function approximation and policy gradient techniques often scale poorly and suffer from instability and high variance). One line of research attempting to address these difficulties makes the natural assumption that we are given a collection of base or constituent policies (possibly heuristic) upon which we would like to improve in a scalable manner. In this work we aim to compete with the max-following policy, which at each state follows the action of whichever constituent policy has the highest value. The max-following policy is always at least as good as the best constituent policy, and may be considerably better. Our main result is an efficient algorithm that learns to compete with the max-following policy, given only access to the constituent policies (but not their value functions). In contrast to prior work in similar settings, our theoretical results require only the minimal assumption of an ERM oracle for value function approximation for the constituent policies (and not the global optimal policy or the max-following policy itself) on samplable distributions. We illustrate our algorithm's experimental effectiveness and behavior on several robotic simulation testbeds.


Orthogonal Random Features

Neural Information Processing Systems

We present an intriguing discovery related to Random Fourier Features: in Gaussian kernel approximation, replacing the random Gaussian matrix by a properly scaled random orthogonal matrix significantly decreases kernel approximation error. We call this technique Orthogonal Random Features (ORF), and provide theoretical and empirical justification for this behavior. Motivated by this discovery, we further propose Structured Orthogonal Random Features (SORF), which uses a class of structured discrete orthogonal matrices to speed up the computation.


Fair Algorithms for Clustering

Neural Information Processing Systems

We study the problem of finding low-cost fair clusterings in data where each data point may belong to many protected groups. Our work significantly generalizes the seminal work of Chierichetti et al. (NIPS 2017) as follows. We allow the user to specify the parameters that define fair representation. More precisely, these parameters define the maximum over-and minimum under-representation of any group in any cluster.


framework for converting vanilla clustering algorithms into fair algorithms with a slight loss in performance, for any

Neural Information Processing Systems

We thank all the reviewers for their very useful comments on our paper. Empirically, our algorithm outperforms known results and theoretical guarantees. A common criticism across the reviews is on the experimental analysis. Indeed, it is; however, it is not easy to find datasets where certain features are sensitive. As the reviewer mentions, we didn't report the diabetes dataset.


Differential Privacy Has Disparate Impact on Model Accuracy

Neural Information Processing Systems

Differential privacy (DP) is a popular mechanism for training machine learning models with bounded leakage about the presence of specific points in the training data. The cost of differential privacy is a reduction in the model's accuracy. We demonstrate that in the neural networks trained using differentially private stochastic gradient descent (DP-SGD), this cost is not borne equally: accuracy of DP models drops much more for the underrepresented classes and subgroups. For example, a gender classification model trained using DP-SGD exhibits much lower accuracy for black faces than for white faces. Critically, this gap is bigger in the DP model than in the non-DP model, i.e., if the original model is unfair, the unfairness becomes worse once DP is applied. We demonstrate this effect for a variety of tasks and models, including sentiment analysis of text and image classification. We then explain why DP training mechanisms such as gradient clipping and noise addition have disproportionate effect on the underrepresented and more complex subgroups, resulting in a disparate reduction of model accuracy.


The Multiple Quantile Graphical Model

Neural Information Processing Systems

We introduce the Multiple Quantile Graphical Model (MQGM), which extends the neighborhood selection approach of Meinshausen and Bühlmann for learning sparse graphical models. The latter is defined by the basic subproblem of modeling the conditional mean of one variable as a sparse function of all others. Our approach models a set of conditional quantiles of one variable as a sparse function of all others, and hence offers a much richer, more expressive class of conditional distribution estimates. We establish that, under suitable regularity conditions, the MQGM identifies the exact conditional independencies with probability tending to one as the problem size grows, even outside of the usual homoskedastic Gaussian data model. We develop an efficient algorithm for fitting the MQGM using the alternating direction method of multipliers. We also describe a strategy for sampling from the joint distribution that underlies the MQGM estimate. Lastly, we present detailed experiments that demonstrate the flexibility and effectiveness of the MQGM in modeling hetereoskedastic non-Gaussian data.


Wei Liu 1 Zhiying Deng 1 Jun Wang

Neural Information Processing Systems

An important line of research in the field of explainability is to extract a small subset of crucial rationales from the full input. The most widely used criterion for rationale extraction is the maximum mutual information (MMI) criterion. However, in certain datasets, there are spurious features non-causally correlated with the label and also get high mutual information, complicating the loss landscape of MMI. Although some penalty-based methods have been developed to penalize the spurious features (e.g., invariance penalty, intervention penalty, etc) to help MMI work better, these are merely remedial measures. In the optimization objectives of these methods, spurious features are still distinguished from plain noise, which hinders the discovery of causal rationales.