Not enough data to create a plot.
Try a different view from the menu above.
Large Scale computation of Means and Clusters for Persistence Diagrams using Optimal Transport
Theo Lacombe, Marco Cuturi, Steve OUDOT
Persistence diagrams (PDs) are now routinely used to summarize the underlying topology of complex data. Despite several appealing properties, incorporating PDs in learning pipelines can be challenging because their natural geometry is not Hilbertian. Indeed, this was recently exemplified in a string of papers which show that the simple task of averaging a few PDs can be computationally prohibitive. We propose in this article a tractable framework to carry out standard tasks on PDs at scale, notably evaluating distances, estimating barycenters and performing clustering. This framework builds upon a reformulation of PD metrics as optimal transport (OT) problems. Doing so, we can exploit recent computational advances: the OT problem on a planar grid, when regularized with entropy, is convex can be solved in linear time using the Sinkhorn algorithm and convolutions.
Mental Sampling in Multimodal Representations
Jianqiao Zhu, Adam Sanborn, Nick Chater
Both resources in the natural environment and concepts in a semantic space are distributed "patchily", with large gaps in between the patches. To describe people's internal and external foraging behavior, various random walk models have been proposed. In particular, internal foraging has been modeled as sampling: in order to gather relevant information for making a decision, people draw samples from a mental representation using random-walk algorithms such as Markov chain Monte Carlo (MCMC). However, two common empirical observations argue against people using simple sampling algorithms such as MCMC for internal foraging. First, the distance between samples is often best described by a Lรฉvy flight distribution: the probability of the distance between two successive locations follows a power-law on the distances.
Sparsified SGD with Memory
Sebastian U. Stich, Jean-Baptiste Cordonnier, Martin Jaggi
Huge scale machine learning problems are nowadays tackled by distributed optimization algorithms, i.e. algorithms that leverage the compute power of many devices for training. The communication overhead is a key bottleneck that hinders perfect scalability. Various recent works proposed to use quantization or sparsification techniques to reduce the amount of data that needs to be communicated, for instance by only sending the most significant entries of the stochastic gradient (top-k sparsification). Whilst such schemes showed very promising performance in practice, they have eluded theoretical analysis so far. In this work we analyze Stochastic Gradient Descent (SGD) with k-sparsification or compression (for instance top-k or random-k) and show that this scheme converges at the same rate as vanilla SGD when equipped with error compensation (keeping track of accumulated errors in memory). That is, communication can be reduced by a factor of the dimension of the problem (sometimes even more) whilst still converging at the same rate. We present numerical experiments to illustrate the theoretical findings and the good scalability for distributed applications.
Geometrically Coupled Monte Carlo Sampling
Mark Rowland, Krzysztof M. Choromanski, Franรงois Chalus, Aldo Pacchiano, Tamas Sarlos, Richard E. Turner, Adrian Weller
Monte Carlo sampling in high-dimensional, low-sample settings is important in many machine learning tasks. We improve current methods for sampling in Euclidean spaces by avoiding independence, and instead consider ways to couple samples. We show fundamental connections to optimal transport theory, leading to novel sampling algorithms, and providing new theoretical grounding for existing strategies. We compare our new strategies against prior methods for improving sample efficiency, including quasi-Monte Carlo, by studying discrepancy. We explore our findings empirically, and observe benefits of our sampling schemes for reinforcement learning and generative modelling.
A Structured Prediction Approach for Label Ranking
Anna Korba, Alexandre Garcia, Florence d'Alchรฉ-Buc
We propose to solve a label ranking problem as a structured output regression task. In this view, we adopt a least square surrogate loss approach that solves a supervised learning problem in two steps: a regression step in a well-chosen feature space and a pre-image (or decoding) step. We use specific feature maps/embeddings for ranking data, which convert any ranking/permutation into a vector representation. These embeddings are all well-tailored for our approach, either by resulting in consistent estimators, or by solving trivially the pre-image problem which is often the bottleneck in structured prediction. Their extension to the case of incomplete or partial rankings is also discussed. Finally, we provide empirical results on synthetic and real-world datasets showing the relevance of our method.