Not enough data to create a plot.
Try a different view from the menu above.
Stochastic Optimal Control and Estimation with Multiplicative and Internal Noise
A pivotal brain computation relies on the ability to sustain perception-action loops. Stochastic optimal control theory offers a mathematical framework to explain these processes at the algorithmic level through optimality principles. However, incorporating a realistic noise model of the sensorimotor system -- accounting for multiplicative noise in feedback and motor output, as well as internal noise in estimation -- makes the problem challenging. Currently, the algorithm that is commonly used is the one proposed in the seminal study in [1]. After discovering some pitfalls in the original derivation, i.e., unbiased estimation does not hold, we improve the algorithm by proposing an efficient gradient descent-based optimization that minimizes the cost-to-go while only imposing linearity of the control law. The optimal solution is obtained by iteratively propagating in closed form the sufficient statistics to compute the expected cost and then minimizing this cost with respect to the filter and control gains. We demonstrate that this approach results in a significantly lower overall cost than current state-of-the-art solutions, particularly in the presence of internal noise, though the improvement is present in other circumstances as well, with theoretical explanations for this enhanced performance. Providing the optimal control law is key for inverse control inference, especially in explaining behavioral data under rationality assumptions.
Continuously Learning, Adapting, and Improving: A Dual-Process Approach to Autonomous Driving
Autonomous driving has advanced significantly due to sensors, machine learning, and artificial intelligence improvements. However, prevailing methods struggle with intricate scenarios and causal relationships, hindering adaptability and interpretability in varied environments. To address the above problems, we introduce LeapAD, a novel paradigm for autonomous driving inspired by the human cognitive process.
Multi-Object 3D Grounding with Dynamic Modules and Language-Informed Spatial Attention
Multi-object 3D Grounding involves locating 3D boxes based on a given query phrase from a point cloud. It is a challenging and significant task with numerous applications in visual understanding, human-computer interaction, and robotics. To tackle this challenge, we introduce D-LISA, a two-stage approach incorporating three innovations. First, a dynamic vision module that enables a variable and learnable number of box proposals.
Libo Qin Qiguang Chen Hao Fei Zhi Chen
Recently, rapid advancements in Multi-Modal In-Context Learning (MM-ICL) have achieved notable success, which is capable of achieving superior performance across various tasks without requiring additional parameter tuning. However, the underlying rules for the effectiveness of MM-ICL remain under-explored. To fill this gap, this work aims to investigate the research question: "What factors affect the performance of MM-ICL?" To this end, we investigate extensive experiments on the three core steps of MM-ICL including demonstration retrieval, demonstration ordering, and prompt construction using 6 vision large language models and 20 strategies. Our findings highlight (1) the necessity of a multi-modal retriever for demonstration retrieval, (2) the importance of intra-demonstration ordering over inter-demonstration ordering, and (3) the enhancement of task comprehension through introductory instructions in prompts. We hope this study can serve as a foundational guide for optimizing MM-ICL strategies in future research.
Not Just Object, But State: Compositional Incremental Learning without Forgetting
As a result, they are limited in the ability to reason fine-grained compositionality of state-object pairs. To remedy this limitation, we propose a novel task called Compositional Incremental Learning (composition-IL), enabling the model to recognize state-object compositions as a whole in an incremental learning fashion. Since the lack of suitable benchmarks, we re-organize two existing datasets and make them tailored for composition-IL. Then, we propose a prompt-based Composition Incremental Learner (CompILer), to overcome the ambiguous composition boundary problem which challenges composition-IL largely. Specifically, we exploit multi-pool prompt learning, which is regularized by inter-pool prompt discrepancy and intra-pool prompt diversity. Besides, we devise object-injected state prompting by using object prompts to guide the selection of state prompts. Furthermore, we fuse the selected prompts by a generalized-mean strategy, to eliminate irrelevant information learned in the prompts. Extensive experiments on two datasets exhibit state-of-the-art performance achieved by CompILer.
Physics-based Zero-Shot Video Generation
Generating videos with realistic and physically plausible motion is one of the main recent challenges in computer vision. While diffusion models are achieving compelling results in image generation, video diffusion models are limited by heavy training and huge models, resulting in videos that are still biased to the training dataset. In this work we propose MotionCraft, a new zero-shot video generator to craft physics-based and realistic videos. MotionCraft is able to warp the noise latent space of an image diffusion model, such as Stable Diffusion, by applying an optical flow derived from a physics simulation. We show that warping the noise latent space results in coherent application of the desired motion while allowing the model to generate missing elements consistent with the scene evolution, which would otherwise result in artefacts or missing content if the flow was applied in the pixel space. We compare our method with the state-of-the-art Text2Video-Zero reporting qualitative and quantitative improvements, demonstrating the effectiveness of our approach to generate videos with finely-prescribed complex motion dynamics.
UrbanKGent: A Unified Large Language Model Agent Framework for Urban Knowledge Graph Construction
Urban knowledge graph has recently worked as an emerging building block to distill critical knowledge from multi-sourced urban data for diverse urban application scenarios. Despite its promising benefits, urban knowledge graph construction (UrbanKGC) still heavily relies on manual effort, hindering its potential advancement. This paper presents UrbanKGent, a unified large language model agent framework, for urban knowledge graph construction. Specifically, we first construct the knowledgeable instruction set for UrbanKGC tasks (such as relational triplet extraction and knowledge graph completion) via heterogeneity-aware and geospatial-infused instruction generation. Moreover, we propose a tool-augmented iterative trajectory refinement module to enhance and refine the trajectories distilled from GPT-4.
MetaCURL: Non-stationary Concave Utility Reinforcement Learning Bianca Marin Moreno Margaux Brรฉgรจre Pierre Gaillard Nadia Oudjane Inria
We explore online learning in episodic Markov decision processes on non-stationary environments (changing losses and probability transitions). Our focus is on the Concave Utility Reinforcement Learning problem (CURL), an extension of classical RL for handling convex performance criteria in state-action distributions induced by agent policies. While various machine learning problems can be written as CURL, its non-linearity invalidates traditional Bellman equations.
Prospective Learning: Learning for a Dynamic Future Ashwin De Silva,1 Rubing Yang,2
In real-world applications, the distribution of the data, and our goals, evolve over time. The prevailing theoretical framework for studying machine learning, namely probably approximately correct (PAC) learning, largely ignores time. As a consequence, existing strategies to address the dynamic nature of data and goals exhibit poor real-world performance. This paper develops a theoretical framework called "Prospective Learning" that is tailored for situations when the optimal hypothesis changes over time. In PAC learning, empirical risk minimization (ERM) is known to be consistent.
SG-Bench: Evaluating LLM Safety Generalization Across Diverse Tasks and Prompt Types
Ensuring the safety of large language model (LLM) applications is essential for developing trustworthy artificial intelligence. Current LLM safety benchmarks have two limitations. First, they focus solely on either discriminative or generative evaluation paradigms while ignoring their interconnection. Second, they rely on standardized inputs, overlooking the effects of widespread prompting techniques, such as system prompts, few-shot demonstrations, and chain-of-thought prompting. To overcome these issues, we developed SG-Bench, a novel benchmark to assess the generalization of LLM safety across various tasks and prompt types. This benchmark integrates both generative and discriminative evaluation tasks and includes extended data to examine the impact of prompt engineering and jailbreak on LLM safety. Our assessment of 3 advanced proprietary LLMs and 10 opensource LLMs with the benchmark reveals that most LLMs perform worse on discriminative tasks than generative ones, and are highly susceptible to prompts, indicating poor generalization in safety alignment. We also explain these findings quantitatively and qualitatively to provide insights for future research.