Not enough data to create a plot.
Try a different view from the menu above.
Improved Algorithms for Contextual Dynamic Pricing Solenne Gaucher
In contextual dynamic pricing, a seller sequentially prices goods based on contextual information. Buyers will purchase products only if the prices are below their valuations. The goal of the seller is to design a pricing strategy that collects as much revenue as possible. We focus on two different valuation models. The first assumes that valuations linearly depend on the context and are further distorted by noise.
Kernel Observers: Systems-Theoretic Modeling and Inference of Spatiotemporally Evolving Processes
Hassan A. Kingravi, Harshal R. Maske, Girish Chowdhary
We consider the problem of estimating the latent state of a spatiotemporally evolving continuous function using very few sensor measurements. We show that layering a dynamical systems prior over temporal evolution of weights of a kernel model is a valid approach to spatiotemporal modeling, and that it does not require the design of complex nonstationary kernels. Furthermore, we show that such a differentially constrained predictive model can be utilized to determine sensing locations that guarantee that the hidden state of the phenomena can be recovered with very few measurements. We provide sufficient conditions on the number and spatial location of samples required to guarantee state recovery, and provide a lower bound on the minimum number of samples required to robustly infer the hidden states. Our approach outperforms existing methods in numerical experiments.
Instruction-Guided Visual Masking
Instruction following is crucial in contemporary LLM. However, when extended to multimodal setting, it often suffers from misalignment between specific textual instruction and targeted local region of an image. To achieve more accurate and nuanced multimodal instruction following, we introduce Instruction-guided Visual Masking (IVM), a new versatile visual grounding model that is compatible with diverse multimodal models, such as LMM and robot model. By constructing visual masks for instruction-irrelevant regions, IVM-enhanced multimodal models can effectively focus on task-relevant image regions to better align with complex instructions. Specifically, we design a visual masking data generation pipeline and create an IVM-Mix-1M dataset with 1 million image-instruction pairs. We further introduce a new learning technique, Discriminator Weighted Supervised Learning (DWSL) for preferential IVM training that prioritizes high-quality data samples. Experimental results on generic multimodal tasks such as VQA and embodied robotic control demonstrate the versatility of IVM, which as a plug-and-play tool, significantly boosts the performance of diverse multimodal models, yielding new state-of-the-art results across challenging multimodal benchmarks. Code, model and data are available at https://github.com/2toinf/IVM.
Ann Yuan
Studies show that safety-tuned models may nevertheless divulge harmful information. In this work, we show that whether they do so depends significantly on who they are talking to, which we refer to as user persona. In fact, we find manipulating user persona to be more effective for eliciting harmful content than certain more direct attempts to control model refusal. We study both natural language prompting and activation steering as intervention methods and show that activation steering is significantly more effective at bypassing safety filters. We shed light on the mechanics of this phenomenon by showing that even when model generations are safe, harmful content can persist in hidden representations and can be extracted by decoding from earlier layers. We also show we can predict a persona's effect on refusal given only the geometry of its steering vector. Finally, we show that certain user personas induce the model to form more charitable interpretations of otherwise dangerous queries.
Fair Allocation in Dynamic Mechanism Design
We consider a dynamic mechanism design problem where an auctioneer sells an indivisible good to two groups of buyers in every round, for a total of T rounds. The auctioneer aims to maximize their discounted overall revenue while adhering to a fairness constraint that guarantees a minimum average allocation for each group. We begin by studying the static case (T = 1) and establish that the optimal mechanism involves two types of subsidization: one that increases the overall probability of allocation to all buyers, and another that favors the group which otherwise has a lower probability of winning the item. We then extend our results to the dynamic case by characterizing a set of recursive functions that determine the optimal allocation and payments in each round. Notably, our results establish that in the dynamic case, the seller, on the one hand, commits to a participation reward to incentivize truth-telling, and, on the other hand, charges an entry fee for every round. Moreover, the optimal allocation once more involves subsidization in favor of one group, where the extent of subsidization depends on the difference in future utilities for both the seller and buyers when allocating the item to one group versus the other. Finally, we present an approximation scheme to solve the recursive equations and determine an approximately optimal and fair allocation efficiently.
Animate3D: Animating Any 3D Model with Multi-view Video Diffusion Fan Wang
Recent advances in 4D generation mainly focus on generating 4D content by distilling pre-trained text or single-view image-conditioned models. It is inconvenient for them to take advantage of various off-the-shelf 3D assets with multi-view attributes, and their results suffer from spatiotemporal inconsistency owing to the inherent ambiguity in the supervision signals.
Convergence of log(1/ϵ) for Gradient-Based Algorithms in Zero-Sum Games without the Condition Number: A Smoothed Analysis
Gradient-based algorithms have shown great promise in solving large (two-player) zero-sum games. However, their success has been mostly confined to the lowprecision regime since the number of iterations grows polynomially in 1/ϵ, where ϵ > 0 is the duality gap. While it has been well-documented that linear convergence--an iteration complexity scaling as log(1/ϵ)--can be attained even with gradient-based algorithms, that comes at the cost of introducing a dependency on certain condition number-like quantities which can be exponentially large in the description of the game. To address this shortcoming, we examine the iteration complexity of several gradient-based algorithms in the celebrated framework of smoothed analysis, and we show that they have polynomial smoothed complexity, in that their number of iterations grows as a polynomial in the dimensions of the game, log(1/ϵ), and 1/σ, where σ measures the magnitude of the smoothing perturbation. Our result applies to optimistic gradient and extra-gradient descent/ascent, as well as a certain iterative variant of Nesterov's smoothing technique. From a technical standpoint, the proof proceeds by characterizing and performing a smoothed analysis of a certain error bound, the key ingredient driving linear convergence in zero-sum games. En route, our characterization also makes a natural connection between the convergence rate of such algorithms and perturbation-stability properties of the equilibrium, which is of interest beyond the model of smoothed complexity.