Plotting


Dimension-free Private Mean Estimation for Anisotropic Distributions

Neural Information Processing Systems

This rate is unavoidable when the distribution is isotropic, namely, when the covariance is a multiple of the identity matrix. Yet, real-world data is often highly anisotropic, with signals concentrated on a small number of principal components. We develop estimators that are appropriate for such signals--our estimators are (ฮต, ฮด)-differentially private and have sample complexity that is dimension-independent for anisotropic subgaussian distributions.


Gradient-Free Methods for Deterministic and Stochastic Nonsmooth Nonconvex Optimization

Neural Information Processing Systems

Nonsmooth nonconvex optimization problems broadly emerge in machine learning and business decision making, whereas two core challenges impede the development of efficient solution methods with finite-time convergence guarantee: the lack of computationally tractable optimality criterion and the lack of computationally powerful oracles. The contributions of this paper are two-fold. First, we establish the relationship between the celebrated Goldstein subdifferential [46] and uniform smoothing, thereby providing the basis and intuition for the design of gradient-free methods that guarantee the finite-time convergence to a set of Goldstein stationary points.


A Further Related Work on Nonsmooth Nonconvex Optimization

Neural Information Processing Systems

To appreciate the difficulty and the broad scope of the research agenda in nonsmooth nonconvex optimization, we start by describing the existing relevant literature. First, the existing work is mostly devoted to establishing the asymptotic convergence properties of various optimization algorithms, including gradient sampling (GS) methods [16-18, 57, 19], bundle methods [56, 40] and subgradient methods [8, 65, 30, 28, 12]. More specifically, Burke et al. [16] provided a systematic investigation of approximating the Clarke subdifferential through random sampling and proposed a gradient bundle method [17]--the precursor of GS methods--for optimizing a nonconvex, nonsmooth and non-Lipschitz function. Later, Burke et al. [18] and Kiwiel [57] proposed the GS methods by incorporating key modifications into the algorithmic scheme in Burke et al. [17] and proved that every cluster point of the iterates generated by GS methods is a Clarke stationary point. For an overview of GS methods, we refer to Burke et al. [19].


Dylan J. Foster

Neural Information Processing Systems

Imitation learning (IL) aims to mimic the behavior of an expert in a sequential decision making task by learning from demonstrations, and has been widely applied to robotics, autonomous driving, and autoregressive text generation. The simplest approach to IL, behavior cloning (BC), is thought to incur sample complexity with unfavorable quadratic dependence on the problem horizon, motivating a variety of different online algorithms that attain improved linear horizon dependence under stronger assumptions on the data and the learner's access to the expert. We revisit the apparent gap between offline and online IL from a learning-theoretic perspective, with a focus on the realizable/well-specified setting with general policy classes up to and including deep neural networks. Through a new analysis of behavior cloning with the logarithmic loss, we show that it is possible to achieve horizon-independent sample complexity in offline IL whenever (i) the range of the cumulative payoffs is controlled, and (ii) an appropriate notion of supervised learning complexity for the policy class is controlled. Specializing our results to deterministic, stationary policies, we show that the gap between offline and online IL is smaller than previously thought: (i) it is possible to achieve linear dependence on horizon in offline IL under dense rewards (matching what was previously only known to be achievable in online IL); and (ii) without further assumptions on the policy class, online IL cannot improve over offline IL with the logarithmic loss, even in benign MDPs. We complement our theoretical results with experiments on standard RL tasks and autoregressive language generation to validate the practical relevance of our findings.



Chromatic Correlation Clustering, Revisited

Neural Information Processing Systems

Chromatic Correlation Clustering (CCC) (introduced by Bonchi et al. [6]) is a natural generalization of the celebrated Correlation Clustering (CC) problem. It models objects with categorical pairwise relationships by an edge-colored graph, and has many applications in data mining, social networks and bioinformatics. We show that there exists a 2.5-approximation to the CCC problem based on a Linear Programming (LP) approach, thus improving the best-known approximation ratio of 3 achieved by Klodt et al. [25]. We also present an efficient heuristic algorithm for CCC leveraging a greedy clustering strategy, and conduct extensive experiments to demonstrate the effectiveness and efficiency of our proposed algorithm.


Unleashing Region Understanding in Intermediate Layers for MLLM-based Referring Expression Generation

Neural Information Processing Systems

The Multi-modal Large Language Model (MLLM) based Referring Expression Generation (REG) task has gained increasing popularity, which aims to generate an unambiguous text description that applies to exactly one object or region in the image by leveraging foundation models. We empirically found that there exists a potential trade-off between the detailedness and the correctness of the descriptions for the referring objects. On the one hand, generating sentences with more details is usually required in order to provide more precise object descriptions. On the other hand, complicated sentences could easily increase the probability of hallucinations. To address this issue, we propose a training-free framework, named as "unleash-then-eliminate", which first elicits the latent information in the intermediate layers, and then adopts a cycle-consistency-based decoding method to alleviate the production of hallucinations. Furthermore, to reduce the computational load of cycle-consistency-based decoding, we devise a Probing-based Importance Estimation method to statistically estimate the importance weights of intermediate layers within a subset. These importance weights are then incorporated into the decoding process over the entire dataset, intervening in the next token prediction from intermediate layers. Extensive experiments conducted on the RefCOCOg and PHD benchmarks show that our proposed framework could outperform existing methods on both semantic and hallucination-related metrics.


DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative Diffusion Models

Neural Information Processing Systems

Nature evolves creatures with a high complexity of morphological and behavioral intelligence, meanwhile computational methods lag in approaching that diversity and efficacy. Co-optimization of artificial creatures' morphology and control in silico shows promise for applications in physical soft robotics and virtual character creation; such approaches, however, require developing new learning algorithms that can reason about function atop pure structure. In this paper, we present Diffuse-Bot, a physics-augmented diffusion model that generates soft robot morphologies capable of excelling in a wide spectrum of tasks. DiffuseBot bridges the gap between virtually generated content and physical utility by (i) augmenting the diffusion process with a physical dynamical simulation which provides a certificate of performance, and ii) introducing a co-design procedure that jointly optimizes physical design and control by leveraging information about physical sensitivities from differentiable simulation. We showcase a range of simulated and fabricated robots along with their capabilities.


Learning the Latent Causal Structure for Modeling Label Noise

Neural Information Processing Systems

In label-noise learning, the noise transition matrix reveals how an instance transitions from its clean label to its noisy label. Accurately estimating an instance's noise transition matrix is crucial for estimating its clean label. However, when only a noisy dataset is available, noise transition matrices can be estimated only for some "special" instances. To leverage these estimated transition matrices to help estimate the transition matrices of other instances, it is essential to explore relations between the matrices of these "special" instances and those of others. Existing studies typically build the relation by explicitly defining the similarity between the estimated noise transition matrices of "special" instances and those of other instances.