Plotting

Can Adversarial Training Be Manipulated By Non-Robust Features? Lue Tao 1 Lei Feng 2,3 Hongxin Wei 4 Jinfeng Yi5

Neural Information Processing Systems

Adversarial training, originally designed to resist test-time adversarial examples, has shown to be promising in mitigating training-time availability attacks. This defense ability, however, is challenged in this paper. We identify a novel threat model named stability attack, which aims to hinder robust availability by slightly manipulating the training data. Under this threat, we show that adversarial training using a conventional defense budget ฯต provably fails to provide test robustness in a simple statistical setting, where the non-robust features of the training data can be reinforced by ฯต-bounded perturbation. Further, we analyze the necessity of enlarging the defense budget to counter stability attacks. Finally, comprehensive experiments demonstrate that stability attacks are harmful on benchmark datasets, and thus the adaptive defense is necessary to maintain robustness.




MeLLoC: Lossless Compression with High-order Mechanism Learning 1

Neural Information Processing Systems

Lossless compression of large-scale scientific floating-point data is critical yet challenging due to the presence of noise and high-order information that arises from model truncation and discretization errors. Existing entropy coding techniques fail to effectively leverage the mechanisms underlying the data generation process. This paper introduces MeLLoC(Mechanism Learning for Lossless Compression), a novel approach that combines high-order mechanism learning with classical encoding to enhance lossless compression for scientific data. The key idea is to treat the data as discrete samples from an underlying physical field described by differential equations, and solve an inverse problem to identify the governing equation coefficients exhibiting more compressible numeric representations. Periodic extension techniques are employed to accelerate the decompression. Through extensive experiments on various scientific datasets, MeLLoC consistently outperforms state-of-the-art lossless compressors while offering compelling trade-offs between compression ratios and computational costs. This work opens up new avenues for exploiting domain knowledge and high-order information to improve data compression in scientific computing.


LLMs for Semi-Automated Data Science: Introducing CAAFE for Context-Aware Automated Feature Engineering Anonymous Author(s) Affiliation Address email

Neural Information Processing Systems

Keep change if performance is improved. Tabular Prediction User: Specifies LLM: Generates Interpreter: Model: problem context Code for feature Executes Performs and dataset engineering generated code cross-validation. Figure 1: CAAFE accepts a dataset as well as user-specified context information and operates by iteratively proposing and evaluating feature engineering operations.



CogVLM: Visual Expert for Pretrained Language Models

Neural Information Processing Systems

We introduce CogVLM, a powerful open-source visual language foundation model. Different from the popular shallow alignment method which maps image features into the input space of language model, CogVLM bridges the gap between the frozen pretrained language model and image encoder by a trainable visual expert module in the attention and FFN layers. As a result, CogVLM enables a deep fusion of vision language features without sacrificing any performance on NLP tasks.



Conformalized Time Series with Semantic Features

Neural Information Processing Systems

Conformal prediction is a powerful tool for uncertainty quantification, but its application to time-series data is constrained by the violation of the exchangeability assumption. Current solutions for time-series prediction typically operate in the output space and rely on manually selected weights to address distribution drift, leading to overly conservative predictions. To enable dynamic weight learning in the semantically rich latent space, we introduce a novel approach called Conformalized Time Series with Semantic Features (CT-SSF). CT-SSF utilizes the inductive bias in deep representation learning to dynamically adjust weights, prioritizing semantic features relevant to the current prediction. Theoretically, we show that CT-SSF surpasses previous methods defined in the output space. Experiments on synthetic and benchmark datasets demonstrate that CT-SSF significantly outperforms existing state-of-the-art (SOTA) conformal prediction techniques in terms of prediction efficiency while maintaining a valid coverage guarantee.


Sounding Bodies: Modeling 3D Spatial Sound of Humans Using Body Pose and Audio

Neural Information Processing Systems

While 3D human body modeling has received much attention in computer vision, modeling the acoustic equivalent, i.e. modeling 3D spatial audio produced by body motion and speech, has fallen short in the community. To close this gap, we present a model that can generate accurate 3D spatial audio for full human bodies. The system consumes, as input, audio signals from headset microphones and body pose, and produces, as output, a 3D sound field surrounding the transmitter's body, from which spatial audio can be rendered at any arbitrary position in the 3D space. We collect a first-of-its-kind multimodal dataset of human bodies, recorded with multiple cameras and a spherical array of 345 microphones. In an empirical evaluation, we demonstrate that our model can produce accurate body-induced sound fields when trained with a suitable loss. Dataset and code are available online.