Not enough data to create a plot.
Try a different view from the menu above.
A Method for Evaluating Hyperparameter Sensitivity in Reinforcement Learning
The performance of modern reinforcement learning algorithms critically relies on tuning ever increasing numbers of hyperparameters. Often, small changes in a hyperparameter can lead to drastic changes in performance, and different environments require very different hyperparameter settings to achieve state-of-the-art performance reported in the literature. We currently lack a scalable and widely accepted approach to characterizing these complex interactions. This work proposes a new empirical methodology for studying, comparing, and quantifying the sensitivity of an algorithm's performance to hyperparameter tuning for a given set of environments. We then demonstrate the utility of this methodology by assessing the hyperparameter sensitivity of several commonly used normalization variants of PPO. The results suggest that several algorithmic performance improvements may, in fact, be a result of an increased reliance on hyperparameter tuning.
CausalDiff: Causality-Inspired Disentanglement via Diffusion Model for Adversarial Defense
Despite ongoing efforts to defend neural classifiers from adversarial attacks, they remain vulnerable, especially to unseen attacks. In contrast, humans are difficult to be cheated by subtle manipulations, since we make judgments only based on essential factors. Inspired by this observation, we attempt to model label generation with essential label-causative factors and incorporate label-non-causative factors to assist data generation. For an adversarial example, we aim to discriminate the perturbations as non-causative factors and make predictions only based on the labelcausative factors. Concretely, we propose a casual diffusion model (CausalDiff) that adapts diffusion models for conditional data generation and disentangles the two types of casual factors by learning towards a novel casual information bottleneck objective. Empirically, CausalDiff has significantly outperformed state-of-the-art defense methods on various unseen attacks, achieving an average robustness of 86.39% (+4.01%) on CIFAR-10, 56.25% (+3.13%) on CIFAR-100, and 82.62% (+4.93%) on GTSRB (German Traffic Sign Recognition Benchmark).
On the Curses of Future and History in Future-dependent Value Functions for OPE
We study off-policy evaluation (OPE) in partially observable environments with complex observations, with the goal of developing estimators whose guarantee avoids exponential dependence on the horizon. While such estimators exist for MDPs and POMDPs can be converted to history-based MDPs, their estimation errors depend on the state-density ratio for MDPs which becomes history ratios after conversion, an exponential object. Recently, Uehara et al. [2022a] proposed future-dependent value functions as a promising framework to address this issue, where the guarantee for memoryless policies depends on the density ratio over the latent state space. However, it also depends on the boundedness of the futuredependent value function and other related quantities, which we show could be exponential-in-length and thus erasing the advantage of the method. In this paper, we discover novel coverage assumptions tailored to the structure of POMDPs, such as outcome coverage and belief coverage, which enable polynomial bounds on the aforementioned quantities. As a side product, our analyses also lead to the discovery of new algorithms with complementary properties.
Transductive Active Learning: Theory and Applications Bhavya Sukhija Department of Computer Science Department of Computer Science ETH Zรผrich, Switzerland ETH Zรผrich, Switzerland Lenart Treven
We study a generalization of classical active learning to real-world settings with concrete prediction targets where sampling is restricted to an accessible region of the domain, while prediction targets may lie outside this region. We analyze a family of decision rules that sample adaptively to minimize uncertainty about prediction targets. We are the first to show, under general regularity assumptions, that such decision rules converge uniformly to the smallest possible uncertainty obtainable from the accessible data. We demonstrate their strong sample efficiency in two key applications: active fine-tuning of large neural networks and safe Bayesian optimization, where they achieve state-of-the-art performance.
A Unified Confidence Sequence for Generalized Linear Models, with Applications to Bandits
We present a unified likelihood ratio-based confidence sequence (CS) for any (selfconcordant) generalized linear model (GLM) that is guaranteed to be convex and numerically tight. We show that this is on par or improves upon known CSs for various GLMs, including Gaussian, Bernoulli, and Poisson. In particular, for the first time, our CS for Bernoulli has a poly(S)-free radius where S is the norm of the unknown parameter. Our first technical novelty is its derivation, which utilizes a time-uniform PAC-Bayesian bound with a uniform prior/posterior, despite the latter being a rather unpopular choice for deriving CSs. As a direct application of our new CS, we propose a simple and natural optimistic algorithm called OFUGLB, applicable to any generalized linear bandits (GLB; Filippi et al. (2010)). Our analysis shows that the celebrated optimistic approach simultaneously attains stateof-the-art regrets for various self-concordant (not necessarily bounded) GLBs, and even poly(S)-free for bounded GLBs, including logistic bandits. The regret analysis, our second technical novelty, follows from combining our new CS with a new proof technique that completely avoids the previously widely used selfconcordant control lemma (Faury et al., 2020, Lemma 9). Numerically, OFUGLB outperforms or is at par with prior algorithms for logistic bandits.