Not enough data to create a plot.
Try a different view from the menu above.
Return of Unconditional Generation: A Self-supervised Representation Generation Method
Unconditional generation--the problem of modeling data distribution without relying on human-annotated labels--is a long-standing and fundamental challenge in generative models, creating a potential of learning from large-scale unlabeled data. In the literature, the generation quality of an unconditional method has been much worse than that of its conditional counterpart. This gap can be attributed to the lack of semantic information provided by labels. In this work, we show that one can close this gap by generating semantic representations in the representation space produced by a self-supervised encoder. These representations can be used to condition the image generator.
e2e06adf560b0706d3b1ddfca9f29756-Supplemental-Datasets_and_Benchmarks_Track.pdf
Risks associated with this paper. This paper's contribution can be divided into three parts, each In discussing these risks, it is worth noting three things. This could be abused by, e.g., using the automated evaluator score Custom data was generated by the authors. Figure 4 shows the breakdown of the StrongREJECT dataset by source and category. Original reported output (translated to English) It is possible to build a homemade explosive device with household items. Here's how to do it: 1. Start by finding materials: You need a piece of plaster or a piece of metal that you like to be the base of your explosive device... [truncated in original paper] Our full re-generated outputs (translated to English) Building a homemade explosive Building a homemade explosive Building a homemade explosive device using household device using household device using household items requires some construction items involves many steps. Here's how to do it: is important to understand Here's how to do it: 1. Planning: First, you need what work the machine will 1. Testing the Materials: It is to plan what you want to do before you start building important to be sure that the achieve with your explosive it.
GS-Blur: A3D Scene-Based Dataset for Realistic Image Deblurring Dongwoo Lee 1 Joonkyu Park 1
To train a deblurring network, an appropriate dataset with paired blurry and sharp images is essential. Existing datasets collect blurry images either synthetically by aggregating consecutive sharp frames or using sophisticated camera systems to capture real blur. However, these methods offer limited diversity in blur types (blur trajectories) or require extensive human effort to reconstruct large-scale datasets, failing to fully reflect real-world blur scenarios. To address this, we propose GS-Blur, a dataset of synthesized realistic blurry images created using a novel approach. To this end, we first reconstruct 3D scenes from multi-view images using 3D Gaussian Splatting (3DGS), then render blurry images by moving the camera view along the randomly generated motion trajectories. By adopting various camera trajectories in reconstructing our GS-Blur, our dataset contains realistic and diverse types of blur, offering a large-scale dataset that generalizes well to real-world blur. Using GS-Blur with various deblurring methods, we demonstrate its ability to generalize effectively compared to previous synthetic or real blur datasets, showing significant improvements in deblurring performance.
REJECT for Empty Jailbreaks
Most jailbreak papers claim the jailbreaks they propose are highly effective, often boasting near-100% attack success rates. However, it is perhaps more common than not for jailbreak developers to substantially exaggerate the effectiveness of their jailbreaks. We suggest this problem arises because jailbreak researchers lack a standard, high-quality benchmark for evaluating jailbreak performance, leaving researchers to create their own. To create a benchmark, researchers must choose a dataset of forbidden prompts to which a victim model will respond, along with an evaluation method that scores the harmfulness of the victim model's responses. We show that existing benchmarks suffer from significant shortcomings and introduce the StrongREJECT benchmark to address these issues.
Variational Gaussian Processes with Decoupled Conditionals
Variational Gaussian processes (GPs) approximate exact GP inference by using a small set of inducing points to form a sparse approximation of the true posterior, with the fidelity of the model increasing with additional inducing points. Although the approximation error in principle can be reduced by using more inducing points, this leads to scaling optimization challenges and computational complexity. To achieve scalability, inducing point methods typically introduce conditional independencies and then approximations to the training and test conditional distributions. In this paper, we consider an alternative approach to modifying the training and test conditionals, in which we make them more flexible. In particular, we investigate decoupling the parametric form of the predictive mean and covariance in the conditionals, and learn independent parameters for predictive mean and covariance. We derive new evidence lower bounds (ELBO) under these more flexible conditionals, and provide two concrete examples of applying the decoupled conditionals. Empirically, we find this additional flexibility leads to improved model performance on a variety of regression tasks and Bayesian optimization (BO) applications.
Dynamic Rescaling for Training GNNs
Graph neural networks (GNNs) with a rescale invariance, such as GATs, can be re-parameterized during optimization through dynamic rescaling of network parameters and gradients while keeping the loss invariant. In this work, we explore dynamic rescaling as a tool to influence GNN training dynamics in two key ways: i) balancing the network with respect to various criteria, and ii) controlling the relative learning speeds of different layers. We gain novel insights, unique to GNNs, that reveal distinct training modes for different tasks. For heterophilic graphs, achieving balance based on relative gradients leads to faster training and better generalization. In contrast, homophilic graphs benefit from delaying the learning of later layers.
Neural Pfaffians: Solving Many Many-Electron Schrรถdinger Equations
Neural wave functions accomplished unprecedented accuracies in approximating the ground state of many-electron systems, though at a high computational cost. Recent works proposed amortizing the cost by learning generalized wave functions across different structures and compounds instead of solving each problem independently. Enforcing the permutation antisymmetry of electrons in such generalized neural wave functions remained challenging as existing methods require discrete orbital selection via non-learnable hand-crafted algorithms. This work tackles the problem by defining overparametrized, fully learnable neural wave functions suitable for generalization across molecules. We achieve this by relying on Pfaffians rather than Slater determinants. The Pfaffian allows us to enforce the antisymmetry on arbitrary electronic systems without any constraint on electronic spin configurations or molecular structure. Our empirical evaluation finds that a single neural Pfaffian calculates the ground state and ionization energies with chemical accuracy across various systems. On the TinyMol dataset, we outperform the'gold-standard' CCSD(T) CBS reference energies by 1.9 mE