Not enough data to create a plot.
Try a different view from the menu above.
Distance Encoding: Design Provably More Powerful Neural Networks for Graph Representation Learning Yanbang Wang Department of Computer Science Department of Computer Science Purdue University
Learning representations of sets of nodes in a graph is crucial for applications ranging from node-role discovery to link prediction and molecule classification. Graph Neural Networks (GNNs) have achieved great success in graph representation learning. However, expressive power of GNNs is limited by the 1-Weisfeiler-Lehman (WL) test and thus GNNs generate identical representations for graph substructures that may in fact be very different. More powerful GNNs, proposed recently by mimicking higher-order-WL tests, only focus on representing entire graphs and they are computationally inefficient as they cannot utilize sparsity of the underlying graph. Here we propose and mathematically analyze a general class of structurerelated features, termed Distance Encoding (DE).
51311013e51adebc3c34d2cc591fefee-Paper.pdf
Noisy labels are inevitable in large real-world datasets. In this work, we explore an area understudied by previous works -- how the network's architecture impacts its robustness to noisy labels. We provide a formal framework connecting the robustness of a network to the alignments between its architecture and target/noise functions. Our framework measures a network's robustness via the predictive power in its representations -- the test performance of a linear model trained on the learned representations using a small set of clean labels. We hypothesize that a network is more robust to noisy labels if its architecture is more aligned with the target function than the noise. To support our hypothesis, we provide both theoretical and empirical evidence across various neural network architectures and different domains. We also find that when the network is well-aligned with the target function, its predictive power in representations could improve upon state-of-the-art (SOTA) noisy-label-training methods in terms of test accuracy and even outperform sophisticated methods that use clean labels.
Cross-Care: Assessing the Healthcare Implications of Pre-training Data on Language Model Bias
Large language models (LLMs) are increasingly essential in processing natural languages, yet their application is frequently compromised by biases and inaccuracies originating in their training data. In this study, we introduce Cross-Care, the first benchmark framework dedicated to assessing biases and real world knowledge in LLMs, specifically focusing on the representation of disease prevalence across diverse demographic groups. We systematically evaluate how demographic biases embedded in pre-training corpora like T heP ile influence the outputs of LLMs. We expose and quantify discrepancies by juxtaposing these biases against actual disease prevalences in various U.S. demographic groups. Our results highlight substantial misalignment between LLM representation of disease prevalence and real disease prevalence rates across demographic subgroups, indicating a pronounced risk of bias propagation and a lack of real-world grounding for medical applications of LLMs. Furthermore, we observe that various alignment methods minimally resolve inconsistencies in the models' representation of disease prevalence across different languages. For further exploration and analysis, we make all data and a data visualization tool available at: www.crosscare.net.
A Unifying Post-Processing Framework for Multi-Objective Learn-to-Defer Problems
Learn-to-Defer is a paradigm that enables learning algorithms to work not in isolation but as a team with human experts. In this paradigm, we permit the system to defer a subset of its tasks to the expert. Although there are currently systems that follow this paradigm and are designed to optimize the accuracy of the final human-AI team, the general methodology for developing such systems under a set of constraints (e.g., algorithmic fairness, expert intervention budget, defer of anomaly, etc.) remains largely unexplored. In this paper, using a d-dimensional generalization to the fundamental lemma of Neyman and Pearson (d-GNP), we obtain the Bayes optimal solution for learn-to-defer systems under various constraints. Furthermore, we design a generalizable algorithm to estimate that solution and apply this algorithm to the COMPAS, Hatespeech, and ACSIncome datasets. Our algorithm shows improvements in terms of constraint violation over a set of learn-to-defer baselines and can control multiple constraint violations at once. The use of d-GNP is beyond learn-to-defer applications and can potentially obtain a solution to decision-making problems with a set of controlled expected performance measures.
TriBERT: Full-body Human-centric Audio-visual Representation Learning for Visual Sound Separation (Supplementary Materials) Mengyu Yang 2,3 Leonid Sigal University of British Columbia 2
Recall that for the n-way multiple choice setting, n 1 choices are negative pairs and only one pair is positive. Accordingly, for n = 4, 3 distractors are sampled, each with an incorrect pose embedding, while the 4th choice contains the matching pose embedding for the given vision and audio embeddings. In other words, the fusion embedding consisting of the vision and audio embeddings is kept as the anchor while negatives are sampled from the pose embeddings only. Of the 3 negative pose embeddings, 2 are considered "easy" negatives, sampled randomly from the entire training set, while the last one is a "hard" negative, sampled randomly from a pool of 25 embeddings corresponding to the 25 nearest neighbours of the anchor vision embedding. In the n = 3 case, 2 hard negatives and no easy negatives are used, with the same nearest neighbour sampling method based on the anchor embedding.