Not enough data to create a plot.
Try a different view from the menu above.
HOI Analysis: Integrating and Decomposing Human-Object Interaction Yong-Lu Li
Human-Object Interaction (HOI) consists of human, object and implicit interaction/verb. Different from previous methods that directly map pixels to HOI semantics, we propose a novel perspective for HOI learning in an analytical manner. In analogy to Harmonic Analysis, whose goal is to study how to represent the signals with the superposition of basic waves, we propose the HOI Analysis. We argue that coherent HOI can be decomposed into isolated human and object. Meanwhile, isolated human and object can also be integrated into coherent HOI again. Moreover, transformations between human-object pairs with the same HOI can also be easier approached with integration and decomposition. As a result, the implicit verb will be represented in the transformation function space. In light of this, we propose an Integration-Decomposition Network (IDN) to implement the above transformations and achieve state-of-the-art performance on widely-used HOI detection benchmarks. Code is available at https://github.com/DirtyHarryLYL/
SCINet: Time Series Modeling and Forecasting with Sample Convolution and Interaction
One unique property of time series is that the temporal relations are largely preserved after downsampling into two sub-sequences. By taking advantage of this property, we propose a novel neural network architecture that conducts sample convolution and interaction for temporal modeling and forecasting, named SCINet. Specifically, SCINet is a recursive downsample-convolve-interact architecture. In each layer, we use multiple convolutional filters to extract distinct yet valuable temporal features from the downsampled sub-sequences or features.