Not enough data to create a plot.
Try a different view from the menu above.
Reproducibility Companion Paper: Making Users Indistinguishable: Attribute-wise Unlearning in Recommender Systems
Li, Yuyuan, Fang, Junjie, Chen, Chaochao, Zheng, Xiaolin, Zhang, Yizhao, Han, Zhongxuan
In this paper, we reproduce the experimental results presented in our previous work titled "Making Users Indistinguishable: Attribute-wise Unlearning in Recommender Systems," which was published in the proceedings of the 31st ACM International Conference on Multimedia. This paper aims to validate the effectiveness of our proposed method and help others reproduce our experimental results. We provide detailed descriptions of our preprocessed datasets, source code structure, configuration file settings, experimental environment, and reproduced experimental results.
A Training-free LLM Framework with Interaction between Contextually Related Subtasks in Solving Complex Tasks
Large language models (LLMs) have shown remarkable capabilities in solving complex tasks. Recent work has explored decomposing such tasks into subtasks with independent contexts. However, some contextually related subtasks may encounter information loss during execution, leading to redundant operations or execution failures. To address this issue, we propose a training-free framework with an interaction mechanism, which enables a subtask to query specific information or trigger certain actions in completed subtasks by sending requests. To implement interaction, we introduce a subtask trajectory memory to enable resumption of completed subtasks upon receiving interaction requests. Additionally, we propose a new action during execution, which generates a concise and precise description of execution process and outcomes of a subtask, to assist subsequent subtasks in determining interaction targets and requests. We evaluate our framework on interactive decision-making task WebShop and multi-hop question answering HotpotQA, with GPT -3.5 and GPT -4, and comparison results show that our framework outperforms the state-of-the-art training-free baselines.
Parsing Through Boundaries in Chinese Word Segmentation
Chen, Yige, Li, Zelong, Yang, Changbing, Zhang, Cindy, Cady, Amandisa, Lee, Ai Ka, Zeng, Zejiao, Pan, Haihua, Park, Jungyeul
Chinese word segmentation is a foundational task in natural language processing (NLP), with far-reaching effects on syntactic analysis. Unlike alphabetic languages like English, Chinese lacks explicit word boundaries, making segmentation both necessary and inherently ambiguous. This study highlights the intricate relationship between word segmentation and syntactic parsing, providing a clearer understanding of how different segmentation strategies shape dependency structures in Chinese. Focusing on the Chinese GSD treebank, we analyze multiple word boundary schemes, each reflecting distinct linguistic and computational assumptions, and examine how they influence the resulting syntactic structures. To support detailed comparison, we introduce an interactive web-based visualization tool that displays parsing outcomes across segmentation methods.
The Reasoning-Memorization Interplay in Language Models Is Mediated by a Single Direction
Hong, Yihuai, Zhou, Dian, Cao, Meng, Yu, Lei, Jin, Zhijing
Large language models (LLMs) excel on a variety of reasoning benchmarks, but previous studies suggest they sometimes struggle to generalize to unseen questions, potentially due to over-reliance on memorized training examples. However, the precise conditions under which LLMs switch between reasoning and memorization during text generation remain unclear. In this work, we provide a mechanistic understanding of LLMs' reasoning-memorization dynamics by identifying a set of linear features in the model's residual stream that govern the balance between genuine reasoning and memory recall. These features not only distinguish reasoning tasks from memory-intensive ones but can also be manipulated to causally influence model performance on reasoning tasks. Additionally, we show that intervening in these reasoning features helps the model more accurately activate the most relevant problem-solving capabilities during answer generation. Our findings offer new insights into the underlying mechanisms of reasoning and memory in LLMs and pave the way for the development of more robust and interpretable generative AI systems.
Sparse Mixture of Experts as Unified Competitive Learning
Do, Giang, Le, Hung, Tran, Truyen
Sparse Mixture of Experts (SMoE) improves the efficiency of large language model training by directing input tokens to a subset of experts. Despite its success in generation tasks, its generalization ability remains an open question. In this paper, we demonstrate that current SMoEs, which fall into two categories: (1) Token Choice ;and (2) Expert Choice, struggle with tasks such as the Massive Text Embedding Benchmark (MTEB). By analyzing their mechanism through the lens of competitive learning, our study finds that the Token Choice approach may overly focus on irrelevant experts, while the Expert Choice approach risks discarding important tokens, potentially affecting performance. Motivated by this analysis, we propose Unified Competitive Learning SMoE (USMoE), a novel and efficient framework designed to improve the performance of existing SMoEs in both scenarios: with and without training. Extensive experiments across various tasks show that USMoE achieves up to a 10% improvement over traditional approaches or reduces computational inference costs by 14% while maintaining strong performance.
FReM: A Flexible Reasoning Mechanism for Balancing Quick and Slow Thinking in Long-Context Question Answering
Zhao, Zhengyi, Zhang, Shubo, Wang, Zezhong, Liang, Bin, Li, Binyang, Wong, Kam-Fai
Long-context question-answering (LCQA) systems have greatly benefited from the powerful reasoning capabilities of large language models (LLMs), which can be categorized into slow and quick reasoning modes. However, both modes have their limitations. Slow thinking generally leans to explore every possible reasoning path, which leads to heavy overthinking and wastes time. Quick thinking usually relies on pattern matching rather than truly understanding the query logic, which misses proper understanding. To address these issues, we propose FReM: Flexible Reasoning Mechanism, a method that adjusts reasoning depth according to the complexity of each question. Specifically, FReM leverages synthetic reference QA examples to provide an explicit chain of thought, enabling efficient handling of simple queries while allowing deeper reasoning for more complex ones. By doing so, FReM helps quick-thinking models move beyond superficial pattern matching and narrows the reasoning space for slow-thinking models to avoid unnecessary exploration. Experiments on seven QA datasets show that FReM improves reasoning accuracy and scalability, particularly for complex multihop questions, indicating its potential to advance LCQA methodologies.
PartialLoading: User Scheduling and Bandwidth Allocation for Parameter-sharing Edge Inference
Qu, Guanqiao, Chen, Qian, Chen, Xianhao, Huang, Kaibin, Fang, Yuguang
By provisioning inference offloading services, edge inference drives the rapid growth of AI applications at the network edge. However, achieving high task throughput with stringent latency requirements remains a significant challenge. To address this issue, we develop a parameter-sharing AI model loading (PartialLoading) framework for multi-user edge inference, which exploits two key insights: 1) the majority of latency arises from loading AI models into server GPU memory, and 2) different AI models can share a significant number of parameters, for which redundant loading should be avoided. Towards this end, we formulate a joint multi-user scheduling and spectrum bandwidth allocation problem to maximize task throughput by exploiting shared parameter blocks across models. The intuition is to judiciously schedule user requests to reuse the shared parameter blocks between consecutively loaded models, thereby reducing model loading time substantially. To facilitate solution finding, we decouple the problem into two sub-problems, i.e., user scheduling and bandwidth allocation, showing that solving them sequentially is equivalent to solving the original problem. Due to the NP-hardness of the problem, we first study an important special case called the "bottom-layer-sharing" case, where AI models share some bottom layers within clusters, and design a dynamic programming-based algorithm to obtain the optimal solution in polynomial time. For the general case, where shared parameter blocks appear at arbitrary positions within AI models, we propose a greedy heuristic to obtain the sub-optimal solution efficiently. Simulation results demonstrate that the proposed framework significantly improves task throughput under deadline constraints compared with user scheduling without exploiting parameter sharing.
S2MoE: Robust Sparse Mixture of Experts via Stochastic Learning
Do, Giang, Le, Hung, Tran, Truyen
Sparse Mixture of Experts (SMoE) enables efficient training of large language models by routing input tokens to a select number of experts. However, training SMoE remains challenging due to the issue of representation collapse. Recent studies have focused on improving the router to mitigate this problem, but existing approaches face two key limitations: (1) expert embeddings are significantly smaller than the model's dimension, contributing to representation collapse, and (2) routing each input to the Top-K experts can cause them to learn overly similar features. In this work, we propose a novel approach called Robust Sparse Mixture of Experts via Stochastic Learning (S2MoE), which is a mixture of experts designed to learn from both deterministic and non-deterministic inputs via Learning under Uncertainty. Extensive experiments across various tasks demonstrate that S2MoE achieves performance comparable to other routing methods while reducing computational inference costs by 28%.
AuditVotes: A Framework Towards More Deployable Certified Robustness for Graph Neural Networks
Lai, Yuni, Zhu, Yulin, Sun, Yixuan, Wu, Yulun, Xiao, Bin, Li, Gaolei, Li, Jianhua, Zhou, Kai
Despite advancements in Graph Neural Networks (GNNs), adaptive attacks continue to challenge their robustness. Certified robustness based on randomized smoothing has emerged as a promising solution, offering provable guarantees that a model's predictions remain stable under adversarial perturbations within a specified range. However, existing methods face a critical trade-off between accuracy and robustness, as achieving stronger robustness requires introducing greater noise into the input graph. This excessive randomization degrades data quality and disrupts prediction consistency, limiting the practical deployment of certifiably robust GNNs in real-world scenarios where both accuracy and robustness are essential. To address this challenge, we propose \textbf{AuditVotes}, the first framework to achieve both high clean accuracy and certifiably robust accuracy for GNNs. It integrates randomized smoothing with two key components, \underline{au}gmentation and con\underline{dit}ional smoothing, aiming to improve data quality and prediction consistency. The augmentation, acting as a pre-processing step, de-noises the randomized graph, significantly improving data quality and clean accuracy. The conditional smoothing, serving as a post-processing step, employs a filtering function to selectively count votes, thereby filtering low-quality predictions and improving voting consistency. Extensive experimental results demonstrate that AuditVotes significantly enhances clean accuracy, certified robustness, and empirical robustness while maintaining high computational efficiency. Notably, compared to baseline randomized smoothing, AuditVotes improves clean accuracy by $437.1\%$ and certified accuracy by $409.3\%$ when the attacker can arbitrarily insert $20$ edges on the Cora-ML datasets, representing a substantial step toward deploying certifiably robust GNNs in real-world applications.
Aurelia: Test-time Reasoning Distillation in Audio-Visual LLMs
Chowdhury, Sanjoy, Gani, Hanan, Anand, Nishit, Nag, Sayan, Gao, Ruohan, Elhoseiny, Mohamed, Khan, Salman, Manocha, Dinesh
Recent advancements in reasoning optimization have greatly enhanced the performance of large language models (LLMs). However, existing work fails to address the complexities of audio-visual scenarios, underscoring the need for further research. In this paper, we introduce AURELIA, a novel actor-critic based audio-visual (AV) reasoning framework that distills structured, step-by-step reasoning into AVLLMs at test time, improving their ability to process complex multi-modal inputs without additional training or fine-tuning. To further advance AVLLM reasoning skills, we present AVReasonBench, a challenging benchmark comprising 4500 audio-visual questions, each paired with detailed step-by-step reasoning. Our benchmark spans six distinct tasks, including AV-GeoIQ, which evaluates AV reasoning combined with geographical and cultural knowledge. Evaluating 18 AVLLMs on AVReasonBench reveals significant limitations in their multi-modal reasoning capabilities. Using AURELIA, we achieve up to a 100% relative improvement, demonstrating its effectiveness. This performance gain highlights the potential of reasoning-enhanced data generation for advancing AVLLMs in real-world applications. Our code and data will be publicly released at: https: //github.com/schowdhury671/aurelia.