Plotting

An Efficient Framework for Clustered Federated Learning

Neural Information Processing Systems

We address the problem of Federated Learning (FL) where users are distributed and partitioned into clusters. This setup captures settings where different groups of users have their own objectives (learning tasks) but by aggregating their data with others in the same cluster (same learning task), they can leverage the strength in numbers in order to perform more efficient Federated Learning. We propose a new framework dubbed the Iterative Federated Clustering Algorithm (IFCA), which alternately estimates the cluster identities of the users and optimizes model parameters for the user clusters via gradient descent. We analyze the convergence rate of this algorithm first in a linear model with squared loss and then for generic strongly convex and smooth loss functions. We show that in both settings, with good initialization, IFCA converges at an exponential rate, and discuss the optimality of the statistical error rate. When the clustering structure is ambiguous, we propose to train the models by combining IFCA with the weight sharing technique in multi-task learning. In the experiments, we show that our algorithm can succeed even if we relax the requirements on initialization with random initialization and multiple restarts. We also present experimental results showing that our algorithm is efficient in non-convex problems such as neural networks. We demonstrate the benefits of IFCA over the baselines on several clustered FL benchmarks.




FlatMatch: Bridging Labeled Data and Unlabeled Data with Cross-Sharpness for Semi-Supervised Learning

Neural Information Processing Systems

Semi-Supervised Learning (SSL) has been an effective way to leverage abundant unlabeled data with extremely scarce labeled data. However, most SSL methods are commonly based on instance-wise consistency between different data transformations. Therefore, the label guidance on labeled data is hard to be propagated to unlabeled data. Consequently, the learning process on labeled data is much faster than on unlabeled data which is likely to fall into a local minima that does not favor unlabeled data, leading to sub-optimal generalization performance. In this paper, we propose FlatMatch which minimizes a cross-sharpness measure to ensure consistent learning performance between the two datasets. Specifically, we increase the empirical risk on labeled data to obtain a worst-case model which is a failure case that needs to be enhanced.





Unveiling Encoder-Free Vision-Language Models Xiaotong Li3,2 Yueze Wang 2

Neural Information Processing Systems

Existing vision-language models (VLMs) mostly rely on vision encoders to extract visual features followed by large language models (LLMs) for visual-language tasks. However, the vision encoders set a strong inductive bias in abstracting visual representation, e.g., resolution, aspect ratio, and semantic priors, which could impede the flexibility and efficiency of the VLMs. Training pure VLMs that accept the seamless vision and language inputs, i.e., without vision encoders, remains challenging and rarely explored. Empirical observations reveal that direct training without encoders results in slow convergence and large performance gaps. In this work, we bridge the gap between encoder-based and encoder-free models, and present a simple yet effective training recipe towards pure VLMs. Specifically, we unveil the key aspects of training encoder-free VLMs efficiently via thorough experiments: (1) Bridging vision-language representation inside one unified decoder; (2) Enhancing visual recognition capability via extra supervision.