Plotting





Enhancing Graph Transformers with Hierarchical Distance Structural Encoding 2

Neural Information Processing Systems

Graph transformers need strong inductive biases to derive meaningful attention scores. Yet, current methods often fall short in capturing longer ranges, hierarchical structures, or community structures, which are common in various graphs such as molecules, social networks, and citation networks. This paper presents a Hierarchical Distance Structural Encoding (HDSE) method to model node distances in a graph, focusing on its multi-level, hierarchical nature. We introduce a novel framework to seamlessly integrate HDSE into the attention mechanism of existing graph transformers, allowing for simultaneous application with other positional encodings. To apply graph transformers with HDSE to large-scale graphs, we further propose a high-level HDSE that effectively biases the linear transformers towards graph hierarchies. We theoretically prove the superiority of HDSE in terms of expressivity and generalization. Empirically, we demonstrate that graph transformers with HDSE excel in graph classification, regression on 7 graph-level datasets, and node classification on 11 large-scale graphs.


NAS-Bench-360: Benchmarking Neural Architecture Search on Diverse Tasks

Neural Information Processing Systems

This makes the performance of NAS approaches in more diverse areas poorly understood. In this paper, we present NAS-Bench-360, a benchmark suite to evaluate methods on domains beyond those traditionally studied in architecture search, and use it to address the following question: do state-of-the-art NAS methods perform well on diverse tasks? To construct the benchmark, we curate ten tasks spanning a diverse array of application domains, dataset sizes, problem dimensionalities, and learning objectives. Each new task is carefully chosen to interoperate with modern convolutional neural network (CNN) search methods while being far-afield from their original development domain. To speed up and reduce the cost of NAS research, for two of the tasks we release the precomputed performance of 15,625 architectures comprising a standard CNN search space. Experimentally, we show the need for more robust NAS evaluation of the kind NAS-Bench-360 enables by showing that several modern NAS procedures perform inconsistently across the ten tasks, with many catastrophically poor results. We also demonstrate how our benchmark and its associated precomputed results will enable future scientific discoveries by testing whether several recent hypotheses promoted in the NAS literature hold on diverse tasks. NAS-Bench-360 is hosted at https://nb360.ml.cmu.edu/.


Magnet: We Never Know How Text-to-Image Diffusion Models Work, Until We Learn How Vision-Language Models Function Chenyi Zhuang 1

Neural Information Processing Systems

Text-to-image diffusion models particularly Stable Diffusion, have revolutionized the field of computer vision. However, the synthesis quality often deteriorates when asked to generate images that faithfully represent complex prompts involving multiple attributes and objects. While previous studies suggest that blended text embeddings lead to improper attribute binding, few have explored this in depth. In this work, we critically examine the limitations of the CLIP text encoder in understanding attributes and investigate how this affects diffusion models. We discern a phenomenon of attribute bias in the text space and highlight a contextual issue in padding embeddings that entangle different concepts. We propose Magnet, a novel training-free approach to tackle the attribute binding problem. We introduce positive and negative binding vectors to enhance disentanglement, further with a neighbor strategy to increase accuracy. Extensive experiments show that Magnet significantly improves synthesis quality and binding accuracy with negligible computational cost, enabling the generation of unconventional and unnatural concepts.



A Group-Theoretic Framework for Data Augmentation

Neural Information Processing Systems

Data augmentation has become an important part of modern deep learning pipelines and is typically needed to achieve state of the art performance for many learning tasks. It utilizes invariant transformations of the data, such as rotation, scale, and color shift, and the transformed images are added to the training set. However, these transformations are often chosen heuristically and a clear theoretical framework to explain the performance benefits of data augmentation is not available. In this paper, we develop such a framework to explain data augmentation as averaging over the orbits of the group that keeps the data distribution approximately invariant, and show that it leads to variance reduction. We study finite-sample and asymptotic empirical risk minimization and work out as examples the variance reduction in certain two-layer neural networks. We further propose a strategy to exploit the benefits of data augmentation for general learning tasks.