Not enough data to create a plot.
Try a different view from the menu above.
Large language model validity via enhanced conformal prediction methods
We develop new conformal inference methods for obtaining validity guarantees on the output of large language models (LLMs). Prior work in conformal language modeling identifies a subset of the text that satisfies a high-probability guarantee of correctness. These methods work by filtering claims from the LLM's original response if a scoring function evaluated on the claim fails to exceed a threshold calibrated via split conformal prediction. Existing methods in this area suffer from two deficiencies. First, the guarantee stated is not conditionally valid.
Supplementary Material and Datasheet: Off to new Shores: A Dataset & Benchmark for (near-)coastal Flood Inundation Forecasting
This supplementary document follows the Datasheets for Datasets template of (8) to document the Global Flood Forecasting (GFF) dataset and its creation. Further resources are provided: in the accompanying publication https://arxiv.org/abs/2409.18591 in the GitHub repository https://github.com/Multihuntr/GFF
Off to new Shores: A Dataset & Benchmark for (near-)coastal Flood Inundation Forecasting
Floods are among the most common and devastating natural hazards, imposing immense costs on our society and economy due to their disastrous consequences. Recent progress in weather prediction and spaceborne flood mapping demonstrated the feasibility of anticipating extreme events and reliably detecting their catastrophic effects afterwards. However, these efforts are rarely linked to one another and there is a critical lack of datasets and benchmarks to enable the direct forecasting of flood extent. To resolve this issue, we curate a novel dataset enabling a timely prediction of flood extent. Furthermore, we provide a representative evaluation of state-of-the-art methods, structured into two benchmark tracks for forecasting flood inundation maps i) in general and ii) focused on coastal regions. Altogether, our dataset and benchmark provide a comprehensive platform for evaluating flood forecasts, enabling future solutions for this critical challenge. Data, code & models are shared at https://github.com/Multihuntr/GFF
Dynamic Tuning Towards Parameter and Inference Efficiency for ViT Adaptation 2,3
Existing parameter-efficient fine-tuning (PEFT) methods have achieved significant success on vision transformers (ViTs) adaptation by improving parameter efficiency. However, the exploration of enhancing inference efficiency during adaptation remains underexplored. This limits the broader application of pre-trained ViT models, especially when the model is computationally extensive. In this paper, we propose Dynamic Tuning (DyT), a novel approach to improve both parameter and inference efficiency for ViT adaptation. Specifically, besides using the lightweight adapter modules, we propose a token dispatcher to distinguish informative tokens from less important ones, allowing the latter to dynamically skip the original block, thereby reducing the redundant computation during inference. Additionally, we explore multiple design variants to find the best practice of DyT. Finally, inspired by the mixture-of-experts (MoE) mechanism, we introduce an enhanced adapter to further boost the adaptation performance.
A PID Controller Approach for Adaptive Probability-dependent Gradient Decay in Model Calibration School of Internet of Things Engineering School of Internet of Things Engineering Jiangnan University
During model optimization, the expected calibration error tends to overfit earlier than classification accuracy, indicating distinct optimization objectives for classification error and calibration error. To ensure consistent optimization of both model accuracy and model calibration, we propose a novel method incorporating a probability-dependent gradient decay coefficient into loss function. This coefficient exhibits a strong correlation with the overall confidence level.
Multi-Group Proportional Representation in Retrieval
Image search and retrieval tasks can perpetuate harmful stereotypes, erase cultural identities, and amplify social disparities. Current approaches to mitigate these representational harms balance the number of retrieved items across population groups defined by a small number of (often binary) attributes. However, most existing methods overlook intersectional groups determined by combinations of group attributes, such as gender, race, and ethnicity. We introduce Multi-Group Proportional Representation (MPR), a novel metric that measures representation across intersectional groups. We develop practical methods for estimating MPR, provide theoretical guarantees, and propose optimization algorithms to ensure MPR in retrieval. We demonstrate that existing methods optimizing for equal and proportional representation metrics may fail to promote MPR. Crucially, our work shows that optimizing MPR yields more proportional representation across multiple intersectional groups specified by a rich function class, often with minimal compromise in retrieval accuracy. Code is provided at https://github.com/
Active Learning with Oracle Epiphany
We present a theoretical analysis of active learning with more realistic interactions with human oracles. Previous empirical studies have shown oracles abstaining on difficult queries until accumulating enough information to make label decisions. We formalize this phenomenon with an "oracle epiphany model" and analyze active learning query complexity under such oracles for both the realizable and the agnos- tic cases. Our analysis shows that active learning is possible with oracle epiphany, but incurs an additional cost depending on when the epiphany happens. Our results suggest new, principled active learning approaches with realistic oracles.
Weight Agnostic Neural Networks
Not all neural network architectures are created equal, some perform much better than others for certain tasks. But how important are the weight parameters of a neural network compared to its architecture? In this work, we question to what extent neural network architectures alone, without learning any weight parameters, can encode solutions for a given task. We propose a search method for neural network architectures that can already perform a task without any explicit weight training. To evaluate these networks, we populate the connections with a single shared weight parameter sampled from a uniform random distribution, and measure the expected performance. We demonstrate that our method can find minimal neural network architectures that can perform several reinforcement learning tasks without weight training. On a supervised learning domain, we find network architectures that achieve much higher than chance accuracy on MNIST using random weights.
Hierarchical Object Representation for Open-Ended Object Category Learning and Recognition
Seyed Hamidreza Kasaei, ana Tome, Luis Lopes
Most robots lack the ability to learn new objects from past experiences. To migrate a robot to a new environment one must often completely re-generate the knowledgebase that it is running with. Since in open-ended domains the set of categories to be learned is not predefined, it is not feasible to assume that one can pre-program all object categories required by robots. Therefore, autonomous robots must have the ability to continuously execute learning and recognition in a concurrent and interleaved fashion. This paper proposes an open-ended 3D object recognition system which concurrently learns both the object categories and the statistical features for encoding objects. In particular, we propose an extension of Latent Dirichlet Allocation to learn structural semantic features (i.e.