Plotting

Oscillatory Model of Short Term Memory

Neural Information Processing Systems

It seems quite natural to assume that the limited capacity is due to the special dynamical nature of STM. Recently, Crick and Koch (1990) suggested that the working memory is functionally related to the binding process, and is obtained via synchronized oscillations of neural populations. The capacity limitation of STM may then result from the competition between oscillations representing items in STM. In the model which we investigate this is indeed the case.


Learning to Segment Images Using Dynamic Feature Binding

Neural Information Processing Systems

Despite the fact that complex visual scenes contain multiple, overlapping objects, people perform object recognition with ease and accuracy. One operation that facilitates recognition is an early segmentation process in which features of objects are grouped and labeled according to which object they belong. Current computational systems that perform this operation are based on predefined grouping heuristics.


A Network of Localized Linear Discriminants

Neural Information Processing Systems

The localized linear discriminant network (LLDN) has been designed to address classification problems containing relatively closely spaced data from different classes (encounter zones [1], the accuracy problem [2]). Locally trained hyperplane segments are an effective way to define the decision boundaries for these regions [3]. The LLD uses a modified perceptron training algorithm for effective discovery of separating hyperplane/sigmoid units within narrow boundaries. The basic unit of the network is the discriminant receptive field (DRF) which combines the LLD function with Gaussians representing the dispersion of the local training data with respect to the hyperplane. The DRF implements a local distance measure [4], and obtains the benefits of networks oflocalized units [5]. A constructive algorithm for the two-class case is described which incorporates DRF's into the hidden layer to solve local discrimination problems. The output unit produces a smoothed, piecewise linear decision boundary. Preliminary results indicate the ability of the LLDN to efficiently achieve separation when boundaries are narrow and complex, in cases where both the "standard" multilayer perceptron (MLP) and k-nearest neighbor (KNN) yield high error rates on training data. 1 The LLD Training Algorithm and DRF Generation The LLD is defined by the hyperplane normal vector V and its "midpoint" M (a translated origin [1] near the center of gravity of the training data in feature space).


Constructing Proofs in Symmetric Networks

Neural Information Processing Systems

This paper considers the problem of expressing predicate calculus in connectionist networks that are based on energy minimization. Given a firstorder-logic knowledge base and a bound k, a symmetric network is constructed (like a Boltzman machine or a Hopfield network) that searches for a proof for a given query. If a resolution-based proof of length no longer than k exists, then the global minima of the energy function that is associated with the network represent such proofs. The network that is generated is of size cubic in the bound k and linear in the knowledge size. There are no restrictions on the type of logic formulas that can be represented.


Network Model of State-Dependent Sequencing

Neural Information Processing Systems

A network model with temporal sequencing and state-dependent modulatory features is described. The model is motivated by neurocognitive data characterizing different states of waking and sleeping. Computer studies demonstrate how unique states of sequencing can exist within the same network under different aminergic and cholinergic modulatory influences. Relationships between state-dependent modulation, memory, sequencing and learning are discussed.


Data Analysis using G/SPLINES

Neural Information Processing Systems

G/SPLINES is an algorithm for building functional models of data. It uses genetic search to discover combinations of basis functions which are then used to build a least-squares regression model. Because it produces a population of models which evolve over time rather than a single model, it allows analysis not possible with other regression-based approaches. 1 INTRODUCTION G/SPLINES is a hybrid of Friedman's Multivariable Adaptive Regression Splines (MARS) algorithm (Friedman, 1990) with Holland's Genetic Algorithm (Holland, 1975). G/SPLINES has advantages over MARS in that it requires fewer least-squares computations, is easily extendable to non-spline basis functions, may discover models inaccessible to local-variable selection algorithms, and allows significantly larger problems to be considered. These issues are discussed in (Rogers, 1991). This paper begins with a discussion of linear regression models, followed by a description of the G/SPLINES algorithm, and finishes with a series of experiments illustrating its performance, robustness, and analysis capabilities.


Time-Warping Network: A Hybrid Framework for Speech Recognition

Neural Information Processing Systems

Such systems attempt to combine the best features of both models: the temporal structure of HMMs and the discriminative power of neural networks. In this work we define a time-warping (1W) neuron that extends the operation of the fonnal neuron of a back-propagation network by warping the input pattern to match it optimally to its weights. We show that a single-layer network of TW neurons is equivalent to a Gaussian density HMMbased recognition system.


Information Measure Based Skeletonisation

Neural Information Processing Systems

Automatic determination of proper neural network topology by trimming oversized networks is an important area of study, which has previously been addressed using a variety of techniques. In this paper, we present Information Measure Based Skeletonisation (IMBS), a new approach to this problem where superfluous hidden units are removed based on their information measure (1M). This measure, borrowed from decision tree induction techniques, reflects the degree to which the hyperplane formed by a hidden unit discriminates between training data classes. We show the results of applying IMBS to three classification tasks and demonstrate that it removes a substantial number of hidden units without significantly affecting network performance.


Active Exploration in Dynamic Environments

Neural Information Processing Systems

Many real-valued connectionist approaches to learning control realize exploration by randomness in action selection. This might be disadvantageous when costs are assigned to "negative experiences". The basic idea presented in this paper is to make an agent explore unknown regions in a more directed manner. This is achieved by a so-called competence map, which is trained to predict the controller's accuracy, and is used for guiding exploration. Based on this, a bistable system enables smoothly switching attention between two behaviors - exploration and exploitation - depending on expected costs and knowledge gain. The appropriateness of this method is demonstrated by a simple robot navigation task.


Perturbing Hebbian Rules

Neural Information Processing Systems

Feedforward networks composed of units which compute a sigmoidal function of a weighted sum of their inputs have been much investigated. We tested the approximation and estimation capabilities of networks using functions more complex than sigmoids. Three classes of functions were tested: polynomials, rational functions, and flexible Fourier series. Unlike sigmoids, these classes can fit nonmonotonic functions. They were compared on three problems: prediction of Boston housing prices, the sunspot count, and robot arm inverse dynamics. The complex units attained clearly superior performance on the robot arm problem, which is a highly nonmonotonic, pure approximation problem. On the noisy and only mildly nonlinear Boston housing and sunspot problems, differences among the complex units were revealed; polynomials did poorly, whereas rationals and flexible Fourier series were comparable to sigmoids. 1 Introduction