Not enough data to create a plot.
Try a different view from the menu above.
COSMIC: Compress Satellite Images Efficiently via Diffusion Compensation
With the rapidly increasing number of satellites in space and their enhanced capabilities, the amount of earth observation images collected by satellites is exceeding the transmission limits of satellite-to-ground links. Although existing learned image compression solutions achieve remarkable performance by using a sophisticated encoder to extract fruitful features as compression and using a decoder to reconstruct, it is still hard to directly deploy those complex encoders on current satellites' embedded GPUs with limited computing capability and power supply to compress images in orbit. In this paper, we propose COSMIC, a simple yet effective learned compression solution to transmit satellite images.
Deliberative Explanations: visualizing network insecurities
A new approach to explainable AI, denoted deliberative explanations, is proposed. Deliberative explanations are a visualization technique that aims to go beyond the simple visualization of the image regions (or, more generally, input variables) responsible for a network prediction. Instead, they aim to expose the deliberations carried by the network to arrive at that prediction, by uncovering the insecurities of the network about the latter. The explanation consists of a list of insecurities, each composed of 1) an image region (more generally, a set of input variables), and 2) an ambiguity formed by the pair of classes responsible for the network uncertainty about the region. Since insecurity detection requires quantifying the difficulty of network predictions, deliberative explanations combine ideas from the literature on visual explanations and assessment of classification difficulty.
FEEL-SNN: Robust Spiking Neural Networks with Frequency Encoding and Evolutionary Leak Factor HuaJin Tang
Currently, researchers think that the inherent robustness of spiking neural networks (SNNs) stems from their biologically plausible spiking neurons, and are dedicated to developing more bio-inspired models to defend attacks. However, most work relies solely on experimental analysis and lacks theoretical support, and the directencoding method and fixed membrane potential leak factor they used in spiking neurons are simplified simulations of those in the biological nervous system, which makes it difficult to ensure generalizability across all datasets and networks. Contrarily, the biological nervous system can stay reliable even in a highly complex noise environment, one of the reasons is selective visual attention and non-fixed membrane potential leaks in biological neurons. This biological finding has inspired us to design a highly robust SNN model that closely mimics the biological nervous system. In our study, we first present a unified theoretical framework for SNN robustness constraint, which suggests that improving the encoding method and evolution of the membrane potential leak factor in spiking neurons can improve SNN robustness. Subsequently, we propose a robust SNN (FEEL-SNN) with Frequency Encoding (FE) and Evolutionary Leak factor (EL) to defend against different noises, mimicking the selective visual attention mechanism and non-fixed leak observed in biological systems. Experimental results confirm the efficacy of both our FE, EL, and FEEL methods, either in isolation or in conjunction with established robust enhancement algorithms, for enhancing the robustness of SNNs.
MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis
Kundan Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen Teoh, Jose Sotelo, Alexandre de Brรฉbisson, Yoshua Bengio, Aaron C. Courville
Previous works (Donahue et al., 2018a; Engel et al., 2019a) have found that generating coherent raw audio waveforms with GANs is challenging. In this paper, we show that it is possible to train GANs reliably to generate high quality coherent waveforms by introducing a set of architectural changes and simple training techniques. Subjective evaluation metric (Mean Opinion Score, or MOS) shows the effectiveness of the proposed approach for high quality mel-spectrogram inversion. To establish the generality of the proposed techniques, we show qualitative results of our model in speech synthesis, music domain translation and unconditional music synthesis. We evaluate the various components of the model through ablation studies and suggest a set of guidelines to design general purpose discriminators and generators for conditional sequence synthesis tasks. Our model is non-autoregressive, fully convolutional, with significantly fewer parameters than competing models and generalizes to unseen speakers for mel-spectrogram inversion. Our pytorch implementation runs at more than 100x faster than realtime on GTX 1080Ti GPU and more than 2x faster than real-time on CPU, without any hardware specific optimization tricks.
Image Captioning: Transforming Objects into Words
Simao Herdade, Armin Kappeler, Kofi Boakye, Joao Soares
Image captioning models typically follow an encoder-decoder architecture which uses abstract image feature vectors as input to the encoder. One of the most successful algorithms uses feature vectors extracted from the region proposals obtained from an object detector. In this work we introduce the Object Relation Transformer, that builds upon this approach by explicitly incorporating information about the spatial relationship between input detected objects through geometric attention. Quantitative and qualitative results demonstrate the importance of such geometric attention for image captioning, leading to improvements on all common captioning metrics on the MS-COCO dataset.
Extending Multi-modal Contrastive Representations Zehan Wang 1, 2 Rongjie Huang
Multi-modal contrastive representation (MCR) of more than three modalities is critical in multi-modal learning. Although recent methods showcase impressive achievements, the high dependence on large-scale, high-quality paired data and the expensive training costs limit their further development. Inspired by recent C-MCR, this paper proposes Extending Multimodal Contrastive Representation (Ex-MCR), a training-efficient and paired-data-free method to build unified contrastive representation for many modalities. Since C-MCR is designed to learn a new latent space for the two non-overlapping modalities and projects them onto this space, a significant amount of information from their original spaces is lost in the projection process. To address this issue, Ex-MCR proposes to extend one modality's space into the other's, rather than mapping both modalities onto a completely new space. This method effectively preserves semantic alignment in the original space. Experimentally, we extend pre-trained audio-text and 3Dimage representations to the existing image-text space. Without using paired data, Ex-MCR achieves comparable performance to advanced methods on a series of audio-image-text and 3D-image-text tasks and achieves superior performance when used in parallel with data-driven methods. Moreover, semantic alignment also emerges between the extended modalities (e.g., audio and 3D).
A Kernel Perspective on Distillation-based Collaborative Learning
Over the past decade, there is a growing interest in collaborative learning that can enhance AI models of multiple parties. However, it is still challenging to enhance performance them without sharing private data and models from individual parties. One recent promising approach is to develop distillation-based algorithms that exploit unlabeled public data but the results are still unsatisfactory in both theory and practice. To tackle this problem, we rigorously analyze a representative distillationbased algorithm in the view of kernel regression. This work provides the first theoretical results to prove the (nearly) minimax optimality of the nonparametric collaborative learning algorithm that does not directly share local data or models in massively distributed statistically heterogeneous environments. Inspired by our theoretical results, we also propose a practical distillation-based collaborative learning algorithm based on neural network architecture.
Can SGD Learn Recurrent Neural Networks with Provable Generalization?
Recurrent Neural Networks (RNNs) are among the most popular models in sequential data analysis. Yet, in the foundational PAC learning language, what concept class can it learn? Moreover, how can the same recurrent unit simultaneously learn functions from different input tokens to different output tokens, without affecting each other?