Plotting

Virtual Scanning: Unsupervised Non-line-of-sight Imaging from Irregularly Undersampled Transients Huanjing Yue 1 Song Li2,3 Xiangjun Yin

Neural Information Processing Systems

Non-line-of-sight (NLOS) imaging allows for seeing hidden scenes around corners through active sensing. Most previous algorithms for NLOS reconstruction require dense transients acquired through regular scans over a large relay surface, which limits their applicability in realistic scenarios with irregular relay surfaces. In this paper, we propose an unsupervised learning-based framework for NLOS imaging from irregularly undersampled transients (IUT). Our method learns implicit priors from noisy irregularly undersampled transients without requiring paired data, which is difficult and expensive to acquire and align. To overcome the ambiguity of the measurement consistency constraint in inferring the albedo volume, we design a virtual scanning process that enables the network to learn within both range space and null space for high-quality reconstruction. We devise a physics-guided SUREbased denoiser to enhance robustness to ubiquitous noise in low-photon imaging conditions.



DeBaRA: Denoising-Based 3D Room Arrangement Generation Lรฉopold Maillard

Neural Information Processing Systems

Generating realistic and diverse layouts of furnished indoor 3D scenes unlocks multiple interactive applications impacting a wide range of industries. The inherent complexity of object interactions, the limited amount of available data and the requirement to fulfill spatial constraints all make generative modeling for 3D scene synthesis and arrangement challenging. Current methods address these challenges autoregressively or by using off-the-shelf diffusion objectives by simultaneously predicting all attributes without 3D reasoning considerations. In this paper, we introduce DeBaRA, a score-based model specifically tailored for precise, controllable and flexible arrangement generation in a bounded environment. We argue that the most critical component of a scene synthesis system is to accurately establish the size and position of various objects within a restricted area. Based on this insight, we propose a lightweight conditional score-based model designed with 3D spatial awareness at its core. We demonstrate that by focusing on spatial attributes of objects, a single trained DeBaRA model can be leveraged at test time to perform several downstream applications such as scene synthesis, completion and re-arrangement. Further, we introduce a novel Self Score Evaluation procedure so it can be optimally employed alongside external LLM models. We evaluate our approach through extensive experiments and demonstrate significant improvement upon state-of-the-art approaches in a range of scenarios.


GenRec: Unifying Video Generation and Recognition with Diffusion Models

Neural Information Processing Systems

Video diffusion models are able to generate high-quality videos by learning strong spatial-temporal priors on large-scale datasets. In this paper, we aim to investigate whether such priors derived from a generative process are suitable for video recognition, and eventually joint optimization of generation and recognition. Building upon Stable Video Diffusion, we introduce GenRec, the first unified framework trained with a random-frame conditioning process so as to learn generalized spatial-temporal representations. The resulting framework can naturally supports generation and recognition, and more importantly is robust even when visual inputs contain limited information. Extensive experiments demonstrate the efficacy of GenRec for both recognition and generation. In particular, GenRec achieves competitive recognition performance, offering 75.8% and 87.2% accuracy on SSV2 and K400, respectively. GenRec also performs the best on class-conditioned image-to-video generation, achieving 46.5 and 49.3 FVD scores on SSV2 and EK-100 datasets. Furthermore, GenRec demonstrates extraordinary robustness in scenarios that only limited frames can be observed.


Active Set Ordering

Neural Information Processing Systems

In this paper, we formalize the active set ordering problem, which involves actively discovering a set of inputs based on their orderings determined by expensive evaluations of a blackbox function. We then propose the mean prediction (MP) algorithm and theoretically analyze it in terms of the regret of predicted pairwise orderings between inputs. Notably, as a special case of this framework, we can cast Bayesian optimization as an active set ordering problem by recognizing that maximizers can be identified solely by comparison rather than by precisely estimating the function evaluations. As a result, we are able to construct the popular Gaussian process upper confidence bound (GP-UCB) algorithm through the lens of ordering with several nuanced insights. We empirically validate the performance of our proposed solution using various synthetic functions and real-world datasets.


Optimistic Critic Reconstruction and Constrained Fine-Tuning for General Offline-to-Online RL Qin-Wen Luo, Ye-Wen Wang 1, Sheng-Jun Huang

Neural Information Processing Systems

Offline-to-online (O2O) reinforcement learning (RL) provides an effective means of leveraging an offline pre-trained policy as initialization to improve performance rapidly with limited online interactions. Recent studies often design fine-tuning strategies for a specific offline RL method and cannot perform general O2O learning from any offline method. To deal with this problem, we disclose that there are evaluation and improvement mismatches between the offline dataset and the online environment, which hinders the direct application of pre-trained policies to online fine-tuning. In this paper, we propose to handle these two mismatches simultaneously, which aims to achieve general O2O learning from any offline method to any online method. Before online fine-tuning, we re-evaluate the pessimistic critic trained on the offline dataset in an optimistic way and then calibrate the misaligned critic with the reliable offline actor to avoid erroneous update. After obtaining an optimistic and and aligned critic, we perform constrained fine-tuning to combat distribution shift during online learning. We show empirically that the proposed method can achieve stable and efficient performance improvement on multiple simulated tasks when compared to the state-of-the-art methods.



Leveraging Hallucinations to Reduce Manual Prompt Dependency in Promptable Segmentation

Neural Information Processing Systems

Promptable segmentation typically requires instance-specific manual prompts to guide the segmentation of each desired object. To minimize such a need, taskgeneric promptable segmentation has been introduced, which employs a single task-generic prompt to segment various images of different objects in the same task. Current methods use Multimodal Large Language Models (MLLMs) to reason detailed instance-specific prompts from a task-generic prompt for improving segmentation accuracy. The effectiveness of this segmentation heavily depends on the precision of these derived prompts. However, MLLMs often suffer hallucinations during reasoning, resulting in inaccurate prompting. While existing methods focus on eliminating hallucinations to improve a model, we argue that MLLM hallucinations can reveal valuable contextual insights when leveraged correctly, as they represent pre-trained large-scale knowledge beyond individual images.


Anytime-Competitive Reinforcement Learning with Policy Prior

Neural Information Processing Systems

This paper studies the problem of Anytime-Competitive Markov Decision Process (A-CMDP). Existing works on Constrained Markov Decision Processes (CMDPs) aim to optimize the expected reward while constraining the expected cost over random dynamics, but the cost in a specific episode can still be unsatisfactorily high. In contrast, the goal of A-CMDP is to optimize the expected reward while guaranteeing a bounded cost in each round of any episode against a policy prior. We propose a new algorithm, called Anytime-Competitive Reinforcement Learning (ACRL), which provably guarantees the anytime cost constraints. The regret analysis shows the policy asymptotically matches the optimal reward achievable under the anytime competitive constraints. Experiments on the application of carbonintelligent computing verify the reward performance and cost constraint guarantee of ACRL.


Anytime-Competitive Reinforcement Learning with Policy Prior

Neural Information Processing Systems

This paper studies the problem of Anytime-Competitive Markov Decision Process (A-CMDP). Existing works on Constrained Markov Decision Processes (CMDPs) aim to optimize the expected reward while constraining the expected cost over random dynamics, but the cost in a specific episode can still be unsatisfactorily high. In contrast, the goal of A-CMDP is to optimize the expected reward while guaranteeing a bounded cost in each round of any episode against a policy prior. We propose a new algorithm, called Anytime-Competitive Reinforcement Learning (ACRL), which provably guarantees the anytime cost constraints. The regret analysis shows the policy asymptotically matches the optimal reward achievable under the anytime competitive constraints. Experiments on the application of carbonintelligent computing verify the reward performance and cost constraint guarantee of ACRL.