Plotting


Learning Distilled Collaboration Graph for Multi-Agent Perception

Neural Information Processing Systems

To promote better performance-bandwidth trade-off for multi-agent perception, we propose a novel distilled collaboration graph (DiscoGraph) to model trainable, pose-aware, and adaptive collaboration among agents. Our key novelties lie in two aspects. First, we propose a teacher-student framework to train DiscoGraph via knowledge distillation. The teacher model employs an early collaboration with holistic-view inputs; the student model is based on intermediate collaboration with single-view inputs. Our framework trains DiscoGraph by constraining postcollaboration feature maps in the student model to match the correspondences in the teacher model.


Stand-Alone Self-Attention in Vision Models

Neural Information Processing Systems

Convolutions are a fundamental building block of modern computer vision systems. Recent approaches have argued for going beyond convolutions in order to capture long-range dependencies. These efforts focus on augmenting convolutional models with content-based interactions, such as self-attention and non-local means, to achieve gains on a number of vision tasks. The natural question that arises is whether attention can be a stand-alone primitive for vision models instead of serving as just an augmentation on top of convolutions. In developing and testing a pure self-attention vision model, we verify that self-attention can indeed be an effective stand-alone layer.


3416a75f4cea9109507cacd8e2f2aefc-AuthorFeedback.pdf

Neural Information Processing Systems

We would like to thank the reviewers for their time and thoughtful comments. In the final version, we will add error bars to capture the variance. We suspect that the effect of changing k is task dependent. Also somehow most of the references were missing in the paper." We leave this to future work.


Bounded rationality in structured density estimation: Supplementary material A Experimental details

Neural Information Processing Systems

A.1 Experiment 1 A.1.1 Participants Experiment 1 recruited 21 participants (11 females, aged 18-25). All participants had provided informed consent before the experiment. Cover story Participants were told that they were apprentice magicians in a magical world. In this world, dangerous magic lava rocks were emitted from an unknown number of invisible volcano(es). On each trial, they observed past landing locations of lava rocks in a specific area (on the screen), and their job was to predict the probability density of future landing locations. More specifically, they were asked to draw a probability density by reporting, using clickand-drag mouse gestures, three key properties of the volcano(es), corresponding to the mean, the weight, and the standard deviation of a Gaussian component. They were told that their bonus payment depended on the accuracy of the reported predictive density.




Bowen Li1 Zhaoyu Li2 Jinqi Luo

Neural Information Processing Systems

Recent years have witnessed the rapid development of Neuro-Symbolic (NeSy) AI systems, which integrate symbolic reasoning into deep neural networks. However, most of the existing benchmarks for NeSy AI fail to provide long-horizon reasoning tasks with complex multi-agent interactions. Furthermore, they are usually constrained by fixed and simplistic logical rules over limited entities, making them far from real-world complexities. To address these crucial gaps, we introduce LogiCity, the first simulator based on customizable first-order logic (FOL) for an urban-like environment with multiple dynamic agents.


Periodic Graph Transformers for Crystal Material Property Prediction

Neural Information Processing Systems

We consider representation learning on periodic graphs encoding crystal materials. Different from regular graphs, periodic graphs consist of a minimum unit cell repeating itself on a regular lattice in 3D space. How to effectively encode these periodic structures poses unique challenges not present in regular graph representation learning. In addition to being E(3) invariant, periodic graph representations need to be periodic invariant. That is, the learned representations should be invariant to shifts of cell boundaries as they are artificially imposed. Furthermore, the periodic repeating patterns need to be captured explicitly as lattices of different sizes and orientations may correspond to different materials. In this work, we propose a transformer architecture, known as Matformer, for periodic graph representation learning. Our Matformer is designed to be invariant to periodicity and can capture repeating patterns explicitly.


Semidefinite Relaxations of the Gromov-Wasserstein Distance

Neural Information Processing Systems

The Gromov-Wasserstein (GW) distance is an extension of the optimal transport problem that allows one to match objects between incomparable spaces. At its core, the GW distance is specified as the solution of a non-convex quadratic program and is not known to be tractable to solve. In particular, existing solvers for the GW distance are only able to find locally optimal solutions. In this work, we propose a semi-definite programming (SDP) relaxation of the GW distance. The relaxation can be viewed as the Lagrangian dual of the GW distance augmented with constraints that relate to the linear and quadratic terms of transportation plans. In particular, our relaxation provides a tractable (polynomial-time) algorithm to compute globally optimal transportation plans (in some instances) together with an accompanying proof of global optimality. Our numerical experiments suggest that the proposed relaxation is strong in that it frequently computes the globally optimal solution. Our Python implementation is available at https://github.com/tbng/gwsdp.