Not enough data to create a plot.
Try a different view from the menu above.
AUC Maximization under Positive Distribution Shift
Maximizing the area under the receiver operating characteristic curve (AUC) is a common approach to imbalanced binary classification problems. Existing AUC maximization methods usually assume that training and test distributions are identical. However, this assumption is often violated in practice due to a positive distribution shift, where the negative-conditional density does not change but the positive-conditional density can vary. This shift often occurs in imbalanced classification since positive data are often more diverse or time-varying than negative data. To deal with this shift, we theoretically show that the AUC on the test distribution can be expressed by using the positive and marginal training densities and the marginal test density. Based on this result, we can maximize the AUC on the test distribution by using positive and unlabeled data in the training distribution and unlabeled data in the test distribution. The proposed method requires only positive labels in the training distribution as supervision. Moreover, the derived AUC has a simple form and thus is easy to implement. The effectiveness of the proposed method is experimentally shown with six real-world datasets.
Meta-Reinforcement Learning with Self-Modifying Networks
Deep Reinforcement Learning has demonstrated the potential of neural networks tuned with gradient descent for solving complex tasks in well-delimited environments. However, these neural systems are slow learners producing specialized agents with no mechanism to continue learning beyond their training curriculum. On the contrary, biological synaptic plasticity is persistent and manifold, and has been hypothesized to play a key role in executive functions such as working memory and cognitive flexibility, potentially supporting more efficient and generic learning abilities. Inspired by this, we propose to build networks with dynamic weights, able to continually perform self-reflexive modification as a function of their current synaptic state and action-reward feedback, rather than a fixed network configuration. The resulting model, MetODS (for Meta-Optimized Dynamical Synapses) is a broadly applicable meta-reinforcement learning system able to learn efficient and powerful control rules in the agent policy space. A single layer with dynamic synapses can perform one-shot learning, generalizes navigation principles to unseen environments and manifests a strong ability to learn adaptive motor policies.
Multistep Distillation of Diffusion Models via Moment Matching
We present a new method for making diffusion models faster to sample. The method distills many-step diffusion models into few-step models by matching conditional expectations of the clean data given noisy data along the sampling trajectory. Our approach extends recently proposed one-step methods to the multistep case, and provides a new perspective by interpreting these approaches in terms of moment matching. By using up to 8 sampling steps, we obtain distilled models that outperform not only their one-step versions but also their original many-step teacher models, obtaining new state-of-the-art results on the Imagenet dataset. We also show promising results on a large text-to-image model where we achieve fast generation of high resolution images directly in image space, without needing autoencoders or upsamplers. Figure 1: Selected 8-step samples from our distilled text-to-image model.
Characterizing the risk of fairwashing
Fairwashing refers to the risk that an unfair black-box model can be explained by a fairer model through post-hoc explanation manipulation. In this paper, we investigate the capability of fairwashing attacks by analyzing their fidelity-unfairness trade-offs. In particular, we show that fairwashed explanation models can generalize beyond the suing group (i.e., data points that are being explained), meaning that a fairwashed explainer can be used to rationalize subsequent unfair decisions of a black-box model. We also demonstrate that fairwashing attacks can transfer across black-box models, meaning that other black-box models can perform fairwashing without explicitly using their predictions. This generalization and transferability of fairwashing attacks imply that their detection will be difficult in practice. Finally, we propose an approach to quantify the risk of fairwashing, which is based on the computation of the range of the unfairness of high-fidelity explainers.
BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images
Thu Nguyen-Phuoc, Christian Richardt, Long Mai, Yong-Liang Yang, Niloy Mitra
We present BlockGAN, an image generative model that learns object-aware 3D scene representations directly from unlabelled 2D images. Current work on scene representation learning either ignores scene background or treats the whole scene as one object. Meanwhile, work that considers scene compositionality treats scene objects only as image patches or 2D layers with alpha maps. Inspired by the computer graphics pipeline, we design BlockGAN to learn to first generate 3D features of background and foreground objects, then combine them into 3D features for the whole scene, and finally render them into realistic images. This allows BlockGAN to reason over occlusion and interaction between objects' appearance, such as shadow and lighting, and provides control over each object's 3D pose and identity, while maintaining image realism. BlockGAN is trained end-to-end, using only unlabelled single images, without the need for 3D geometry, pose labels, object masks, or multiple views of the same scene. Our experiments show that using explicit 3D features to represent objects allows BlockGAN to learn disentangled representations both in terms of objects (foreground and background) and their properties (pose and identity).
Separations in the Representational Capabilities of Transformers and Recurrent Architectures Michael Hahn 2 Phil Blunsom 1,3
Transformer architectures have been widely adopted in foundation models. Due to their high inference costs, there is renewed interest in exploring the potential of efficient recurrent architectures (RNNs). In this paper, we analyze the differences in the representational capabilities of Transformers and RNNs across several tasks of practical relevance, including index lookup, nearest neighbor, recognizing bounded Dyck languages, and string equality. For the tasks considered, our results show separations based on the size of the model required for different architectures. For example, we show that a one-layer Transformer of logarithmic width can perform index lookup, whereas an RNN requires a hidden state of linear size. Conversely, while constant-size RNNs can recognize bounded Dyck languages, we show that one-layer Transformers require a linear size for this task. Furthermore, we show that two-layer Transformers of logarithmic size can perform decision tasks such as string equality or disjointness, whereas both one-layer Transformers and recurrent models require linear size for these tasks. We also show that a log-size two-layer Transformer can implement the nearest neighbor algorithm in its forward pass; on the other hand recurrent models require linear size. Our constructions are based on the existence of N nearly orthogonal vectors in O(log N) dimensional space and our lower bounds are based on reductions from communication complexity problems.
Implicitly Guided Design with PropEn: Match your Data to Follow the Gradient Vladimir Gligorijević
Across scientific domains, generating new models or optimizing existing ones while meeting specific criteria is crucial. Traditional machine learning frameworks for guided design use a generative model and a surrogate model (discriminator), requiring large datasets. However, real-world scientific applications often have limited data and complex landscapes, making data-hungry models inefficient or impractical. We propose a new framework, PropEn, inspired by "matching", which enables implicit guidance without training a discriminator. By matching each sample with a similar one that has a better property value, we create a larger training dataset that inherently indicates the direction of improvement. Matching, combined with an encoder-decoder architecture, forms a domain-agnostic generative framework for property enhancement. We show that training with a matched dataset approximates the gradient of the property of interest while remaining within the data distribution, allowing efficient design optimization. Extensive evaluations in toy problems and scientific applications, such as therapeutic protein design and airfoil optimization, demonstrate PropEn's advantages over common baselines. Notably, the protein design results are validated with wet lab experiments, confirming the competitiveness and effectiveness of our approach.